36 resultados para TRIAZACYCLONONANE-AMIDE LIGANDS

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional homonuclear NMR was used to characterize synthetic DNA minor groove-binding ligands in complexes with oligonucleotides containing three different A-T binding sites. The three ligands studied have a C2 axis of symmetry and have the same general structural motif of a central para-substituted benzene ring flanked by two meta-substituted rings, giving the molecules a crescent shape. As with other ligands of this shape, specificity seems to arise from a tight fit in the narrow minor groove of the preferred A-T-rich sequences. We found that these ligands slide between binding subsites, behavior attributed to the fact that all of the amide protons in the ligand backbone cannot hydrogen bond to the minor groove simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen–deuterium exchange experiments have been used previously to investigate the structures of well defined states of a given protein. These include the native state, the unfolded state, and any intermediates that can be stably populated at equilibrium. More recently, the hydrogen–deuterium exchange technique has been applied in kinetic labeling experiments to probe the structures of transiently formed intermediates on the kinetic folding pathway of a given protein. From these equilibrium and nonequilibrium studies, protection factors are usually obtained. These protection factors are defined as the ratio of the rate of exchange of a given backbone amide when it is in a fully solvent-exposed state (usually obtained from model peptides) to the rate of exchange of that amide in some state of the protein or in some intermediate on the folding pathway of the protein. This definition is straightforward for the case of equilibrium studies; however, it is less clear-cut for the case of transient kinetic intermediates. To clarify the concept for the case of burst-phase intermediates, we have introduced and mathematically defined two different types of protection factors: one is Pstruc, which is more related to the structure of the intermediate, and the other is Papp, which is more related to the stability of the intermediate. Kinetic hydrogen–deuterium exchange data from disulfide-intact ribonuclease A and from cytochrome c are discussed to explain the use and implications of these two definitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is not known how human immunodeficiency virus type 1 (HIV-1)-derived antagonist peptides interfere with intracellular activation of cytotoxic T lymphocytes (CTL). We identified Gag epitope variants in HIV-1-infected patients that act as antagonists of CTL responses to unmutated epitopes. We then investigated the effect that presentation of each variant has on the early events of T cell receptor (TCR) signal transduction. We found that altered peptide ligands (APL) failed to induce phosphorylation of pp36, a crucial adaptor protein involved in TCR signal transduction. We further investigated the effect that simultaneous presentation of APL and native antigen at low, physiological, peptide concentrations (1 nM) has on TCR signal transduction, and we found that the presence of APL can completely inhibit induction of the protein tyrosine phosphorylation events of the TCR signal transduction cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mainly based on various inhibitor studies previously performed, amidases came to be regarded as sulfhydryl enzymes. Not completely satisfied with this generally accepted interpretation, we performed a series of site-directed mutagenesis studies on one particular amidase of Rhodococcus rhodochrous J1 that was involved in its nitrile metabolism. For these experiments, the recombinant amidase was produced as the inclusion body in Escherichia coli to greatly facilitate its recovery and subsequent purification. With regard to the presumptive active site residue Cys203, a Cys203 → Ala mutant enzyme still retained 11.5% of the original specific activity. In sharp contrast, substitutions in certain other positions in the neighborhood of Cys203 had a far more dramatic effect on the amidase. Glutamic acid substitution of Asp191 reduced the specific activity of the mutant enzyme to 1.33% of the wild-type activity. Furthermore, Asp191 → Asn substitution as well as Ser195 → Ala substitution completely abolished the specific activity. It would thus appear that, among various conserved residues residing within the so-called signature sequence common to all amidases, the real active site residues are Asp191 and Ser195 rather than Cys203. Inasmuch as an amide bond (CO-NH2) in the amide substrate is not too far structurally removed from a peptide bond (CO-NH-), the signature sequences of various amidases were compared with the active site sequences of various types of proteases. It was found that aspartic acid and serine residues corresponding to Asp191 and Ser195 of the Rhodococcus amidase are present within the active site sequences of aspartic proteinases, thus suggesting the evolutionary relationship between the two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data suggest that survival of resting, naïve T cells requires an interaction with self MHC molecules. From analysis of the class I MHC-restricted T cell receptor transgenic strain OT-I, we report a different response. Rather than merely surviving, these T cells proliferated slowly after transfer into T-depleted syngeneic hosts. This expansion required both T cell “space” and expression of normal levels of self class I MHC molecules. Furthermore, we demonstrate that during homeostatic expansion in a suitable environment, naïve phenotype (CD44low) OT-I T cells converted to memory phenotype (CD44med/high), despite the absence of foreign antigenic stimulation. On the other hand, cells undergoing homeostatic expansion did not acquire cytolytic effector function. The significance of these data for reactivity of T cells with self peptide/MHC ligands and the implications for normal and abnormal T cell homeostasis are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myasthenia gravis (MG) is a T cell-regulated, antibody-mediated autoimmune disease. Two peptides representing sequences of the human acetylcholine receptor α-subunit, p195–212 and p259–271, previously were shown to stimulate the proliferation of peripheral blood lymphocytes of patients with MG and were found to be immunodominant T cell epitopes in SJL and BALB/c mice, respectively. Single amino acid-substituted analogs of p195–212 and p259–271, as well as a dual analog composed of the tandemly arranged two single analogs, were shown to inhibit, in vitro and in vivo, MG-associated autoimmune responses. Stimulation of T cells through the antigen-specific T cell receptor activates tyrosine kinases and phospholipase C (PLC). Therefore, in attempts to understand the mechanism of action of the analogs, we first examined whether the myasthenogenic peptides trigger tyrosine phosphorylation and activation of phospholipase C. For that purpose, we measured generation of inositol phosphates and tyrosine phosphorylation of PLC after stimulation of the p195–212- and p259–271-specific T cell lines with these myasthenogenic peptides. Both myasthenogenic peptides stimulated generation of inositol phosphates as well as tyrosine phosphorylation of PLC. However, the single and dual analogs, although inducing tyrosine phosphorylation of PLC, could not induce PLC activity. Furthermore, the single and dual analogs inhibited the induced PLC activity whereas they could not inhibit tyrosine phosphorylation of PLC that was caused by the myasthenogenic peptides. Thus, the altered peptides and the dual analog act as partial agonists. The down-regulation of PLC activity by the analogs may account for their capacity to inhibit in vitro MG-associated T cell responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CB1, a cannabinoid receptor enriched in neuronal tissue, was found in high concentration in retinas of rhesus monkey, mouse, rat, chick, goldfish, and tiger salamander by using a subtype-specific polyclonal antibody. Immunolabeling was detected in the two synaptic layers of the retina, the inner and outer plexiform layers, of all six species examined. In the outer plexiform layer, CB1 was located in and/or on cone pedicles and rod spherules. Labeling was detected in some amacrine cells of all species and in the ganglion cells and ganglion cell axons of all species except fish. In addition, sparse labeling was found in the inner and/or outer segments of the photoreceptors of monkey, mouse, rat, and chick. Using GC/MS to detect possible endogenous cannabinoids, we found 3 nmol of 2-arachidonylglycerol per g of tissue, but no anandamide was detectable. Cannabinoid receptor agonists induced a dramatic reduction in the amplitude of voltage-gated L-type calcium channel currents in identified retinal bipolar cells. The presence and distribution of the CB1 receptor, the large amounts of 2-arachidonylglycerol found, and the effects of cannabinoids on calcium channel activity in bipolar cells suggest a substantive role for an endogenous cannabinoid signaling system in retinal physiology, and perhaps vision in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of exceptionally potent inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of oleamide (an endogenous sleep-inducing lipid), and anandamide (an endogenous ligand for cannabinoid receptors) is detailed. The inhibitors may serve as useful tools to clarify the role of endogenous oleamide and anandamide and may prove to be useful therapeutic agents for the treatment of sleep disorders or pain. The combination of several features—an optimal C12–C8 chain length, π-unsaturation introduction at the corresponding arachidonoyl Δ8,9/Δ11,12 and oleoyl Δ9,10 location, and an α-keto N4 oxazolopyridine with incorporation of a second weakly basic nitrogen provided FAAH inhibitors with Kis that drop below 200 pM and are 102–103 times more potent than the corresponding trifluoromethyl ketones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) effect cellular responses by binding to FGF receptors (FGFRs). FGF bound to extracellular domains on the FGFR in the presence of heparin activates the cytoplasmic receptor tyrosine kinase through autophosphorylation. We have crystallized a complex between human FGF1 and a two-domain extracellular fragment of human FGFR2. The crystal structure, determined by multiwavelength anomalous diffraction analysis of the selenomethionyl protein, is a dimeric assemblage of 1:1 ligand:receptor complexes. FGF is bound at the junction between the two domains of one FGFR, and two such units are associated through receptor:receptor and secondary ligand:receptor interfaces. Sulfate ion positions appear to mark the course of heparin binding between FGF molecules through a basic region on receptor D2 domains. This dimeric assemblage provides a structural mechanism for FGF signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general strategy is described for improving the binding properties of small-molecule ligands to protein targets. A bifunctional molecule is created by chemically linking a ligand of interest to another small molecule that binds tightly to a second protein. When the ligand of interest is presented to the target protein by the second protein, additional protein–protein interactions outside of the ligand-binding sites serve either to increase or decrease the affinity of the binding event. We have applied this approach to an intractable target, the SH2 domain, and demonstrate a 3-fold enhancement over the natural peptide. This approach provides a way to modulate the potency and specificity of biologically active compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence is growing to support a functional role for the prion protein (PrP) in copper metabolism. Copper ions appear to bind to the protein in a highly conserved octapeptide repeat region (sequence PHGGGWGQ) near the N terminus. To delineate the site and mode of binding of Cu(II) to the PrP, the copper-binding properties of peptides of varying lengths corresponding to 2-, 3-, and 4-octarepeat sequences have been probed by using various spectroscopic techniques. A two-octarepeat peptide binds a single Cu(II) ion with Kd ≈ 6 μM whereas a four-octarepeat peptide cooperatively binds four Cu(II) ions. Circular dichroism spectra indicate a distinctive structuring of the octarepeat region on Cu(II) binding. Visible absorption, visible circular dichroism, and electron spin resonance spectra suggest that the coordination sphere of the copper is identical for 2, 3, or 4 octarepeats, consisting of a square-planar geometry with three nitrogen ligands and one oxygen ligand. Consistent with the pH dependence of Cu(II) binding, proton NMR spectroscopy indicates that the histidine residues in each octarepeat are coordinated to the Cu(II) ion. Our working model for the structure of the complex shows the histidine residues in successive octarepeats bridged between two copper ions, with both the Nɛ2 and Nδ1 imidazole nitrogen of each histidine residue coordinated and the remaining coordination sites occupied by a backbone amide nitrogen and a water molecule. This arrangement accounts for the cooperative nature of complex formation and for the apparent evolutionary requirement for four octarepeats in the PrP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunodominant, CD8+ cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein–Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide—RSKFRQIV—located in a serine/threonine kinase and a bacterial peptide—RRKYKQII—located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted αβ TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8+ CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.