8 resultados para TRAP
em National Center for Biotechnology Information - NCBI
Resumo:
A novel method of P-element mutagenesis is described for the isolation of mutants affecting the development of the Drosophila compound eye. It exploits the interaction between the Bride of Sevenless (Boss) ligand and the Sevenless (Sev) receptor tyrosine kinase that triggers the formation of the UV-sensitive photoreceptor neuron, R7. Transposition of a boss cDNA transgene, in an otherwise boss mutant background, was used as a “phenotypic trap” in live flies to identify enhancers expressed during a narrow time window in eye development. Using a rapid behavioral screen, more than 400,000 flies were tested for restoration of R7. Some 1,800 R7-containing flies were identified. Among these, 21 independent insertions with expression of the boss reporter gene in the R8 cell were identified by a external eye morphology and staining with an antibody against Boss. Among 900 lines with expression of the boss reporter gene in multiple cells assessed for homozygous mutant phenotypes, insertions in the marbles, glass, gap1, and fasciclin II genes were isolated. This phenotypic enhancer-trap facilitates (i) the isolation of enhancer-traps with a specific expression pattern, and (ii) the recovery of mutants disrupting development of specific tissues. Because the temporal and tissue specificity of the phenotypic trap is dependent on the choice of the marker used, this approach can be extended to other tissues and developmental stages.
Resumo:
A modification of the Paul–Straubel trap previously described by us may profitably be operated in a Paul–Straubel–Kingdon (PSK) mode during the initial loading of an individual ion into the trap. Thereby the coating of the trap ring electrode by the atomic beam directed upon it in earlier experiments is eliminated, as is the ionization of an already trapped ion. Coating created serious problems as it spot-wise changed the work function of the ring electrode, which caused large, uncontrolled dc fields in the trap center that prevented zero-point confinement. Operating the Paul–Straubel trap with a small negative bias on the ring electrode wire is all that is required to realize the PSK mode. In this mode the tiny ring trap in the center of the long, straight wire section is surrounded by a second trapping well shaped like a long, thin-walled cylindrical shell and extending to the end-caps. There, ions may be conveniently created in this well without danger of coating the ring with barium. In addition, the long second well is useful as a multi-ion reservoir.
Resumo:
Large quantities of DNA sequence information about plant genes are rapidly accumulating in public databases, but to progress from DNA sequence to biological function a mutant allele for each of the genes ideally should be available. Here we describe a gene trap construct that allowed us to disrupt transcribed genes with a high efficiency in Arabidopsis thaliana. In the T-DNA vector used, the expression of a bacterial reporter gene coding for neomycin phosphotransferase II (nptII) depends on the in vivo generation of a translation fusion upon the T-DNA integration into the Arabidopsis genome. Analysis of 20 selected transgenic lines showed that 12 lines are T-DNA insertion mutants. The disrupted genes analyzed encoded ribosomal proteins (three lines), aspartate tRNA synthase, DNA ligase, basic-domain leucine zipper DNA binding protein, ATP-binding cassette transporter, and five proteins of unknown function. Four tagged genes were new for Arabidopsis. The results presented here suggest that gene trapping, using nptII as a reporter gene, can be as high as 80% and opens novel perspectives for systematic gene tagging in A. thaliana.
Resumo:
A strategy employing gene-trap mutagenesis and site-specific recombination (Cre/loxP) has been developed to isolate genes that are transcriptionally activated during programmed cell death. Interleukin-3 (IL-3)-dependent hematopoietic precursor cells (FDCP1) expressing a reporter plasmid that codes for herpes simplex virus–thymidine kinase, neomycin phosphotransferase, and murine IL-3 were transduced with a retroviral gene-trap vector carrying coding sequences for Cre-recombinase (Cre) in the U3 region. Activation of Cre expression from integrations into active genes resulted in a permanent switching between the selectable marker genes that converted the FDCP1 cells to factor independence. Selection for autonomous growth yielded recombinants in which Cre sequences in the U3 region were expressed from upstream cellular promoters. Because the expression of the marker genes is independent of the trapped cellular promoter, genes could be identified that were transiently induced by IL-3 withdrawal.
Resumo:
In the absence of lasers approaching trapped ion clock transitions in sharpness we propose to replace the 12.49 m laser field exciting the D3/2-D5/2 transition of the single Ba+ ion A in D3/2 with the near-field of a close by identical ion B in the excited D5/2 state. We tune the frequency of the near-field by the differential Stark shift generated when the center of mass of the tuned ions is slightly moved out of the trap center by a small bias voltage. We demonstrate that the resultant resonant energy exchange can be made considerably faster than the natural lifetime of either metastable level and show how it might be detected.
Resumo:
Kinesin is a molecular motor that transports organelles along microtubules. This enzyme has two identical 7-nm-long motor domains, which it uses to move between consecutive tubulin binding sites spaced 8 nm apart along a microtubular protofilament. The molecular mechanism of this movement, which remains to be elucidated, may be common to all families of motor proteins. In this study, a high-resolution optical-trap microscope was used to measure directly the magnitude of abrupt displacements produced by a single kinesin molecule transporting a microscopic bead. The distribution of magnitudes reveals that kinesin not only undergoes discrete 8-nm movements, in agreement with previous work [Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S.M. (1993) Nature (London) 365, 721-727], but also frequently exhibits smaller movements of about 5 nm. A possible explanation for these unexpected smaller movements is that kinesin's movement from one dimer to the next along a protofilament involves at least two distinct events in the mechanical cycle.
Resumo:
We have developed a novel induction gene trap approach that preselects in vitro for integrations into genes that lie downstream of receptor/ligand-mediated signaling pathways. Using this approach, we have identified 20 gene trap integrations in embryonic stem cells, 9 of which were induced and 11 of which were repressed after exposure to exogenous retinoic acid (RA). All but one of these integrations showed unique spatially restricted or tissue-specific patterns of expression between 8.5 and 11.5 days of embryogenesis. Interestingly, expression was observed in tissues that are affected by alterations in RA levels during embryogenesis. Sequence analysis of fusion transcripts from six integrations revealed five novel gene sequences and the previously identified protooncogene c-fyn. To date, germ-line transmission and breeding has uncovered one homozygous embryonic lethal and three homozygous viable insertions. These studies demonstrate the potential of this induction gene trap approach for identifying and mutating genes downstream of signal transduction pathways.
Resumo:
The trp RNA-binding attenuation protein of Bacillus subtilis, TRAP, regulates both transcription and translation by binding to specific transcript sequences. The optimal transcript sequences required for TRAP binding were determined by measuring complex formation between purified TRAP protein and synthetic RNAs. RNAs were tested that contained repeats of different trinucleotide sequences, with differing spacing between the repeats. A transcript containing GAG repeats separated by two-nucleotide spacers was bound most tightly. In addition, transmission electron microscopy was used to examine the structure of TRAP and the TRAP-transcript complex. TRAP was observed to be a toroid-shaped oligomer when free or when bound to either a natural or a synthetic RNA.