116 resultados para TRANSGENIC MOUSE MODEL

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the efficacy of a hairpin ribozyme targeting the 5′ leader sequence of HIV-1 RNA in a transgenic model system. Primary spleen cells derived from transgenic or control mice were infected with HIV-1/MuLV pseudotype virus. A significantly reduced susceptibility to infection in ribozyme-expressing transgenic spleen cells (P = 0.01) was shown. Variation of transgene-expression levels between littermates revealed a dose response between ribozyme expression and viral resistance, with an estimated cut off value below 0.2 copies of hairpin ribozyme per cell. These findings open up possibilities for studies on ribozyme efficacy and anti-HIV-1 gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-specific effector T cells are prerequisite to immune protection, but because of the lack of effector cell-specific markers, their generation and differentiation has been difficult to study. We report that effector cells are highly enriched in a T cell subset that can be specifically identified in transgenic (T-GFP) mice expressing green fluorescent protein (GFP) under control of the murine CD4 promoter and proximal enhancer. Consistent with previous studies of these transcriptional control elements, GFP was strongly and specifically expressed in nearly all resting and short-term activated CD4+ and CD8+ T cells. However, when T-GFP mice were challenged with vaccinia virus, allogeneic tumor cells, or staphylococcal enterotoxin A, the cytotoxic and IFN-γ-producing T cells lost GFP expression. Upon T cell receptor (TCR) ligation by αCD3, sorted GFP+ cells fluxed calcium and proliferated vigorously. In contrast, GFP− effector cells showed a diminished calcium flux and did not proliferate. Instead, they underwent apoptosis unless supplied with exogenous IL-2. By reverse transcription–PCR analysis, the GFP− cells up-regulated the pro-apoptotic molecule, Fas-L, and down-regulated gene expression of the proximal TCR signaling molecule, CD3ζ, and c-jun, a component of the AP-1 transcription factor. Thus, differential regulation of TCR signaling may explain the divergent responses of naïve and effector T cells to antigen stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantified the amount of amyloid β-peptide (Aβ) immunoreactivity as well as amyloid deposits in a large cohort of transgenic mice overexpressing the V717F human amyloid precursor protein (APPV717F+/− TG mice) with no, one, or two mouse apolipoprotein E (Apoe) alleles at various ages. Remarkably, no amyloid deposits were found in any brain region of APPV717F+/− Apoe−/− TG mice as old as 22 mo of age, whereas age-matched APPV717F +/− Apoe+/− and Apoe+/+ TG mice display abundant amyloid deposition. The amount of Aβ immunoreactivity in the hippocampus was also markedly reduced in an Apoe gene dose-dependent manner (Apoe+/+ > Apoe+/− ≫ Apoe−/−), and no Aβ immunoreactivity was detected in the cerebral cortex of APPV717F+/− Apoe−/− TG mice at any of the time points examined. The absence of apolipoprotein E protein (apoE) dramatically reduced the amount of both Aβ1–40 and Aβ1–42 immunoreactive deposits as well as the resulting astrogliosis and microgliosis normally observed in APPV717F TG mice. ApoE immunoreactivity was detected in a subset of Aβ immunoreactive deposits and in virtually all thioflavine-S-fluorescent amyloid deposits. Because the absence of apoE alters neither the transcription or translation of the APPV717F transgene nor its processing to Aβ peptide(s), we postulate that apoE promotes both the deposition and fibrillization of Aβ, ultimately affecting clearance of protease-resistant Aβ/apoE aggregates. ApoE appears to play an essential role in amyloid deposition in brain, one of the neuropathological hallmarks of Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the current limitations of gene transfer protocols involving mammalian genomes is the lack of spatial and temporal control over the desired gene manipulation. Starting from a human keratin gene showing a complex regulation as a template, we identified regulatory sequences that confer inducible gene expression in a subpopulation of keratinocytes in stratified epithelia of adult transgenic mice. We used this cassette to produce transgenic mice with an inducible skin blistering phenotype mimicking a form of epidermolytic hyperkeratosis, a keratin gene disorder. Upon induction by topical application of a phorbol ester, the mutant keratin transgene product accumulates in the differentiating layers of epidermis, leading to keratinocyte lysis after application of mechanical trauma. This mouse model will allow for a better understanding of the complex relationship between keratin mutation, keratinocyte cytoarchitecture, and hypersensitivity to trauma. The development of an inducible expression vector showing an exquisite cellular specificity has important implications for manipulating genes in a spatially and temporally controlled fashion in transgenic mice, and for the design of gene therapy strategies using skin as a tissue source for the controlled delivery of foreign substances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transgenic mouse model of metastatic prostate cancer has been developed that is 100% penetrant in multiple pedigrees. Nucleotides −6500 to +34 of the mouse cryptdin-2 gene were used to direct expression of simian virus 40 T antigen to a subset of neuroendocrine cells in all lobes of the FVB/N mouse prostate. Transgene expression is initiated between 7 and 8 weeks of age and leads to development of prostatic intraepithelial neoplasia within a week. Prostatic intraepithelial neoplasia progresses rapidly to local invasion. Metastases to lymph nodes, liver, lung, and bone are common by 6 months. Tumorigenesis is not dependent on androgens. This model indicates that the neuroendocrine cell lineage of the prostate is exquisitely sensitive to transformation and provides insights about the significance of neuroendocrine differentiation in human prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-selectin mediates homing of lymphocytes to lymph nodes (LN). Transgenic mice that express rat insulin promoter regulated simian virus 40 Tag (RIP-Tag) develop large, local cancers that metastasize to liver but not LN. To test whether this lack of LN metastases reflects their absence from the circulation, transgenic mice were produced that express Tag (T), L-selectin (L), and Escherichia coli LacZ (Z), in pancreatic β cells. LTZ mice developed insulinomas that specifically had LN metastases; metastasis was blocked by an anti L-selectin mAb. LacZ+ tumor cells from these LN homed to secondary LN upon transfer. These results suggest that the highly vascularized islet carcinomas are shedding tumor cells into the bloodstream, which is a necessary but insufficient condition for metastasis to occur; L-selectin can facilitate homing of such tumor cells to LN, resulting in metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic mice expressing the sequences coding for the envelope proteins of the hepatitis B virus (HBV) in the liver have been used as a model of the HBV chronic carrier state. We evaluated the possibility of inducing a specific immune response to the viral envelope antigens and thus potentially controlling chronic HBV infection. Using HBV-specific DNA-mediated immunization in this transgenic model, we show that the immune response induced after a single intramuscular injection of DNA resulted in the complete clearance of circulating hepatitis B surface antigen and in the long-term control of transgene expression in hepatocytes. This response does not involve a detectable cytopathic effect in the liver. Adoptive transfer of fractionated primed spleen cells from DNA-immunized mice shows that T cells are responsible for the down-regulation of HBV mRNA in the liver of transgenic mice. To our knowledge, this is the first demonstration of a potential immunotherapeutic application of DNA-mediated immunization against an infectious disease and raises the possibility of designing more effective ways of treating HBV chronic carriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the c-myc oncogene is associated with a variety of both human and experimental tumors, and cooperation of other oncogenes and growth factors with the myc family are critical in the evolution of the malignant phenotype. The interaction of hepatocyte growth factor (HGF) with c-myc during hepatocarcinogenesis in a transgenic mouse model has been analyzed. While sustained overexpression of c-myc in the liver leads to cancer, coexpression of HGF and c-myc in the liver delayed the appearance of preneoplastic lesions and prevented malignant conversion. Furthermore, tumor promotion by phenobarbital was completely inhibited in the c-myc/HGF double transgenic mice, whereas phenobarbital was an effective tumor promoter in the c-myc single transgenic mice. The results indicate that HGF may function as a tumor suppressor during early stages of liver carcinogenesis, and suggest the possibility of therapeutic application for this cytokine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sickle cell anemia (SCA) and thalassemia are among the most common genetic diseases worldwide. Current approaches to the development of murine models of SCA involve the elimination of functional murine α- and β-globin genes and substitution with human α and βs transgenes. Recently, two groups have produced mice that exclusively express human HbS. The transgenic lines used in these studies were produced by coinjection of human α-, γ-, and β-globin constructs. Thus, all of the transgenes are integrated at a single chromosomal site. Studies in transgenic mice have demonstrated that the normal gene order and spatial organization of the members of the human β-globin gene family are required for appropriate developmental and stage-restricted expression of the genes. As the cis-acting sequences that participate in activation and silencing of the γ- and β-globin genes are not fully defined, murine models that preserve the normal structure of the locus are likely to have significant advantages for validating future therapies for SCA. To produce a model of SCA that recapitulates not only the phenotype, but also the genotype of patients with SCA, we have generated mice that exclusively express HbS after transfer of a 240-kb βs yeast artificial chromosome. These mice have hemolytic anemia, 10% irreversibly sickled cells in their peripheral blood, reticulocytosis, and other phenotypic features of SCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone-dependent epithelial sodium transport in the distal nephron is mediated by the absorption of sodium through the highly selective, amiloride-sensitive epithelial sodium channel (ENaC) made of three homologous subunits (α, β, and γ). In human, autosomal recessive mutations of α, β, or γENaC subunits cause pseudohypoaldosteronism type 1 (PHA-1), a renal salt-wasting syndrome characterized by severe hypovolemia, high plasma aldosterone, hyponatremia, life-threatening hyperkaliemia, and metabolic acidosis. In the mouse, inactivation of αENaC results in failure to clear fetal lung liquid at birth and in early neonatal death, preventing the observation of a PHA-1 renal phenotype. Transgenic expression of αENaC driven by a cytomegalovirus promoter in αENaC(−/−) knockout mice [αENaC(−/−)Tg] rescued the perinatal lethal pulmonary phenotype and partially restored Na+ transport in renal, colonic, and pulmonary epithelia. At days 5–9, however, αENaC(−/−)Tg mice showed clinical features of severe PHA-1 with metabolic acidosis, urinary salt-wasting, growth retardation, and 50% mortality. Adult αENaC(−/−)Tg survivors exhibited a compensated PHA-1 with normal acid/base and electrolyte values but 6-fold elevation of plasma aldosterone compared with wild-type littermate controls. We conclude that partial restoration of ENaC-mediated Na+ absorption in this transgenic mouse results in a mouse model for PHA-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KCNQ1 encodes KCNQ1, which belongs to a family of voltage-dependent K+ ion channel proteins. KCNQ1 associates with a regulatory subunit, KCNE1, to produce the cardiac repolarizing current, IKs. Loss-of-function mutations in the human KCNQ1 gene have been linked to Jervell and Lange–Nielsen Syndrome (JLNS), a disorder characterized by profound bilateral deafness and a cardiac phenotype. To generate a mouse model for JLNS, we created a line of transgenic mice that have a targeted disruption in the Kcnq1 gene. Behavioral analysis revealed that the Kcnq1−/− mice are deaf and exhibit a shaker/waltzer phenotype. Histological analysis of the inner ear structures of Kcnq1−/− mice revealed gross morphological anomalies because of the drastic reduction in the volume of endolymph. ECGs recorded from Kcnq1−/− mice demonstrated abnormal T- and P-wave morphologies and prolongation of the QT and JT intervals when measured in vivo, but not in isolated hearts. These changes are indicative of cardiac repolarization defects that appear to be induced by extracardiac signals. Together, these data suggest that Kcnq1−/− mice are a potentially valuable animal model of JLNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic human heart failure is characterized by abnormalities in β-adrenergic receptor (βAR) signaling, including increased levels of βAR kinase 1 (βARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of βARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of βARK1 (βARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca2+-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 ± 1 weeks). In contrast, CSQ/βARKct mice exhibited a significant increase in mean survival age (15 ± 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/βARKct, left ventricular end diastolic dimension 5.60 ± 0.17 mm vs. 4.19 ± 0.09 mm, P < 0.005; % fractional shortening, 15 ± 2 vs. 36 ± 2, P < 0.005). The enhancement of the survival rate in CSQ/βARKct mice was substantially potentiated by chronic treatment with the βAR antagonist metoprolol (CSQ/βARKct nontreated vs. CSQ/βARKct metoprolol treated, 15 ± 1 weeks vs. 25 ± 2 weeks, P < 0.0001). Thus, overexpression of the βARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with β-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of βARK1 inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular attachment receptor for adenovirus (Ad), Coxsackie adenovirus receptor (CAR), required for delivery of Ad into primary cells, is not present on all cell types, thus restricting Ad-gene delivery systems. To circumvent this constrain, a transgenic mouse has been generated that expresses a truncated human CAR in all tissues analyzed. These mice allowed efficient in vitro infections at low multiplicities into lymphoid, myeloid, and endothelial cells. Furthermore, in vivo administration of Ad-vectors results in infection of macrophages, lymphocytes, and endothelial cells. In addition, tail vein injection resulted in targeting of virus into previously inaccessible areas, such as the lung and the capillaries of the brain. The CAR transgenic mice will be useful for rapid functional genomic analysis in vivo, for testing the efficacy of gene therapy procedures or as a source of easily transducible cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active immunization with the amyloid β (Aβ) peptide has been shown to decrease brain Aβ deposition in transgenic mouse models of Alzheimer's disease and certain peripherally administered anti-Aβ antibodies were shown to mimic this effect. In exploring factors that alter Aβ metabolism and clearance, we found that a monoclonal antibody (m266) directed against the central domain of Aβ was able to bind and completely sequester plasma Aβ. Peripheral administration of m266 to PDAPP transgenic mice, in which Aβ is generated specifically within the central nervous system (CNS), results in a rapid 1,000-fold increase in plasma Aβ, due, in part, to a change in Aβ equilibrium between the CNS and plasma. Although peripheral administration of m266 to PDAPP mice markedly reduces Aβ deposition, m266 did not bind to Aβ deposits in the brain. Thus, m266 appears to reduce brain Aβ burden by altering CNS and plasma Aβ clearance.