4 resultados para TRACT DISEASE
em National Center for Biotechnology Information - NCBI
Resumo:
Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.
Resumo:
Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)38 tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.
Resumo:
Type 1 fimbriae are adhesion organelles expressed by many Gram-negative bacteria. They facilitate adherence to mucosal surfaces and inflammatory cells in vitro, but their contribution to virulence has not been defined. This study presents evidence that type 1 fimbriae increase the virulence of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory response to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1 negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived in higher numbers, and induced a greater neutrophil influx into the urine, than O1:K1:H7 type 1-negative isolates. To confirm a role of type 1 fimbriae, a fimH null mutant (CN1016) was constructed from an O1:K1:H7 type 1-positive parent. E. coli CN1016 had reduced survival and inflammatogenicity in the mouse urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae (E. coli CN1018) had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract.
Resumo:
In central neurons, monamine neurotransmitters are taken up and stored within two distinct classes of regulated secretory vesicles: small synaptic vesicles and large dense core vesicles (DCVs). Biochemical and pharmacological evidence has shown that this uptake is mediated by specific vesicular monamine transporters (VMATs). Recent molecular cloning techniques have identified the vesicular monoamine transporter (VMAT2) that is expressed in brain. This transporter determines the sites of intracellular storage of monoamines and has been implicated in both the modulation of normal monoaminergic neurotransmission and the pathogenesis of related neuropsychiatric disease. We used an antiserum against VMAT2 to examine its ultrastructural distribution in rat solitary tract nuclei, a region that contains a dense and heterogeneous population of monoaminergic neurons. We find that both immunoperoxidase and immunogold labeling for VMAT2 localize to DCVs and small synaptic vesicles in axon terminals, the trans-Golgi network of neuronal perikarya, tubulovesicles of smooth endoplasmic reticulum, and potential sites of vesicular membrane recycling. In axon terminals, immunogold labeling for VMAT2 was preferentially associated with DCVs at sites distant from typical synaptic junctions. The results provide direct evidence that a single VMAT is expressed in two morphologically distinct types of regulated secretory vesicles in central monoaminergic neurons.