2 resultados para TORRE REYES, CARLOS DE LA, 1928-1996
em National Center for Biotechnology Information - NCBI
Resumo:
Male mating success is an important fitness component in Drosophila. The seminal fluid conveyed with the sperm inhibits the proclivity of the female to remate and reduces her fitness. Nevertheless, females may remate before they have exhausted the sperm from the first male and consequently use sperm from both males. We have studied concurrent multiple paternity (CMP) in two Drosophila melanogaster populations, from an apple orchard and a vineyard just after harvest. CMP is high in both populations, somewhat greater than 50%; but it is not significantly higher in the vineyard, where the population density is much greater than in the orchard. Population density had been thought to be an important determinant of CMP incidence. We have used four gene loci coding for enzymes as independent markers for detecting CMP.
Resumo:
We have studied the mechanism of accurate in vitro RNA editing of Trypanosoma brucei ATPase 6 mRNA, using four mRNA-guide RNA (gRNA) pairs that specify deletion of 2, 3, or 4 U residues at editing site 1 and mitochondrial extract. This extract not only catalyzes deletion of the specified number of U residues but also exhibits a novel endonuclease activity that cleaves the input pre-mRNA in a gRNA-directed manner, precisely at the phosphodiester bond predicted in a simple enzymatic model of RNA editing. This cleavage site is inconsistent with a chimera-based editing mechanism. The U residues to be deleted, present at the 3' end of the upstream cleavage product, are then removed evidently by a 3' U-specific exonuclease and not by a reverse reaction of terminal U transferase. RNA ligase can then join the mRNA halves through their newly formed 5' P and 3' OH termini, generating mRNA faithfully edited at the first editing site. This resultant, partially edited mRNA can then undergo accurate, gRNA-directed cleavage at editing site 2, again precisely as predicted by the enzymatic editing model. All of these enzymatic activities cofractionate with the U-deletion activity and may reside in a single complex. The data imply that each round of editing is a four-step process, involving (i) gRNA-directed cleavage of the pre-mRNA at the bond immediately 5' of the region base paired to the gRNA, (ii) U deletion from or U addition to the 3' OH of the upstream mRNA half, (iii) ligation of the mRNA halves, and (iv) formation of additional base pairing between the correctly edited site and the gRNA that directs subsequent nuclease cleavage at the next editing site.