8 resultados para THIOL MONOLAYERS
em National Center for Biotechnology Information - NCBI
Resumo:
The cell-mediated assembly of fibronectin (Fn) into fibrillar matrices is a complex multistep process that is incompletely understood because of the chemical complexity of the extracellular matrix and a lack of experimental control over molecular interactions and dynamic events. We have identified conditions under which Fn assembles into extended fibrillar networks after adsorption to a dipalmitoyl phosphatidylcholine (DPPC) monolayer in contact with physiological buffer. We propose a sequential model for the Fn assembly pathway, which involves the orientation of Fn underneath the lipid monolayer by insertion into the liquid expanded (LE) phase of DPPC. Attractive interactions between these surface-anchored proteins and the liquid condensed (LC) domains leads to Fn enrichment at domain edges. Spontaneous self-assembly into fibrillar networks, however, occurs only after expansion of the DPPC monolayer from the LC phase though the LC/LE phase coexistence. Upon monolayer expansion, the domain boundaries move apart while attractive interactions among Fn molecules and between Fn and domain edges produce a tensile force on the proteins that initiates fibril assembly. The resulting fibrils have been characterized in situ by using fluorescence and light-scattering microscopy. We have found striking similarities between fibrils produced under DPPC monolayers and those found on cellular surfaces, including their assembly pathways.
Resumo:
It has been shown with lipid layers and more recently with purple membranes that protons have slow surface-to-bulk transfer. This results in long-range proton lateral conduction along membranes. We report here that such lateral transfer can take place along a pure protein film. It is strongly controlled by the packing. Subtle reorganizations of the protein–protein contact can be biological switches between interfacial and delocalized proton pathways between sources and sinks.
Resumo:
A theoretical analysis is given for the rate of change of domain sizes in lipid monolayers at the air–water interface. The calculation is applicable to liquid domains formed from binary mixtures of lipids that form two coexisting liquid phases. Under conditions where the two lipid molecules have approximately equal areas, the equilibration rate does not involve macroscopic hydrodynamic flow in the subphase but rather depends on the diffusion coefficient of the lipid molecules. The calculation shows that the equilibration rate in binary mixtures of cholesterol and phosphatidylcholine is remarkably slow, the radius of a typical 20-μm diameter domain changing by as little as a part in a million per second. Under these circumstances, equilibration times of the order of days or weeks are expected. Even with such long times, the final state reached by the monolayer will in general be a state of metastable equilibrium, rather than true equilibrium.
Resumo:
A variety of naturally occurring biomaterials owe their unusual structural and mechanical properties to layers of β-sheet proteins laminated between layers of inorganic mineral. To explore the possibility of fabricating novel two-dimensional protein layers, we studied the self-assembly properties of de novo proteins from a designed combinatorial library. Each protein in the library has a distinct 63 amino acid sequence, yet they all share an identical binary pattern of polar and nonpolar residues, which was designed to favor the formation of six-stranded amphiphilic β-sheets. Characterization of proteins isolated from the library demonstrates that (i) they self assemble into monolayers at an air/water interface; (ii) the monolayers are dominated by β-sheet secondary structure, as shown by both circular dichroism and infrared spectroscopies; and (iii) the measured areas (500- 600 Å2) of individual protein molecules in the monolayers match those expected for proteins folded into amphiphilic β-sheets. The finding that similar structures are formed by distinctly different protein sequences suggests that assembly into β-sheet monolayers can be encoded by binary patterning of polar and nonpolar amino acids. Moreover, because the designed binary pattern is compatible with a wide variety of different sequences, it may be possible to fabricate β-sheet monolayers by using combinations of side chains that are explicitly designed to favor particular applications of novel biomaterials.
Resumo:
A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.
Resumo:
We have demonstrated the assembly of two-dimensional patterns of functional antibodies on a surface. In particular, we have selectively adsorbed micrometer-scale regions of biotinylated immunoglobulin that exhibit specific antigen binding after adsorption. The advantage of this technique is its potential adaptability to adsorbing arbitrary proteins in tightly packed monolayers while retaining functionality. The procedure begins with the formation of a self-assembled monolayer of n-octadecyltrimethoxysilane (OTMS) on a silicon dioxide surface. This monolayer can then be selectively removed by UV photolithography. Under appropriate solution conditions, the OTMS regions will adsorb a monolayer of bovine serum albumin (BSA), while the silicon dioxide regions where the OTMS has been removed by UV light will adsorb less than 2% of a monolayer, thus creating high contrast patterned adsorption of BSA. The attachment of the molecule biotin to the BSA allows the pattern to be replicated in a layer of streptavidin, which bonds to the biotinylated BSA and in turn will bond an additional layer of an arbitrary biotinylated protein. In our test case, functionality of the biotinylated goat antibodies raised against mouse immunoglobulin was demonstrated by the specific binding of fluorescently labeled mouse IgG.
Resumo:
This paper describes a method based on experimentally simple techniques--microcontact printing and micromolding in capillaries--to prepare tissue culture substrates in which both the topology and molecular structure of the interface can be controlled. The method combines optically transparent contoured surfaces with self-assembled monolayers (SAMs) of alkanethiolates on gold to control interfacial characteristics; these tailored interfaces, in turn, control the adsorption of proteins and the attachment of cells. The technique uses replica molding in poly(dimethylsiloxane) molds having micrometer-scale relief patterns on their surfaces to form a contoured film of polyurethane supported on a glass slide. Evaporation of a thin (< 12 nm) film of gold on this surface-contoured polyurethane provides an optically transparent substrate, on which SAMs of terminally functionalized alkanethiolates can be formed. In one procedure, a flat poly(dimethylsiloxane) stamp was used to form a SAM of hexadecanethiolate on the raised plateaus of the contoured surface by contact printing hexadecanethiol [HS(CH2)15CH3]; a SAM terminated in tri(ethylene glycol) groups was subsequently formed on the bare gold remaining in the grooves by immersing the substrate in a solution of a second alkanethiol [HS(CH2)11(OCH2CH2)3OH]. Then this patterned substrate was immersed in a solution of fibronectin, the protein adsorbed only on the methyl-terminated plateau regions of the substrate [the tri(ethylene glycol)-terminated regions resisted the adsorption of protein]; bovine capillary endothelial cells attached only on the regions that adsorbed fibronectin. A complementary procedure confined protein adsorption and cell attachment to the grooves in this substrate.
Resumo:
Diamide oxidizes cellular thiols and induces oxidative stress. To isolate plant genes which may, when overexpressed, increase tolerance of plants toward oxidative damage, an in vivo diamide tolerance screening in yeasts was used. An Arabidopsis cDNA library in a yeast expression vector was used to transform a yeast strain with intact antioxidant defense. Cells from approximately 10(5) primary transformants were selected for resistance to diamide. Three Arabidopsis cDNAs which confer diamide tolerance were isolated. This drug tolerance was specific and no cross tolerance toward hydroperoxides was found. One cDNA (D3) encodes a polypeptide which has an amino-terminal J domain characteristic of a divergent family of DnaJ chaperones. Another (D18) encodes a putative dTDP-D-glucose 4,6-dehydratase. Surprisingly, the third cDNA (D22) encodes a plant homolog of gamma-glutamyltransferases. It would have been difficult to predict that the expression of those genes would lead to an improved survival under conditions of depletion of cellular thiols. Hence, we suggest that this cloning approach may be a useful contribution to the isolation of plant genes that can help to cope with oxidative stress.