2 resultados para THERMOREGULATION

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptin deficiency results in a complex obesity phenotype comprising both hyperphagia and lowered metabolism. The hyperphagia results, at least in part, from the absence of induction by leptin of melanocyte stimulating hormone (MSH) secretion in the hypothalamus; the MSH normally then binds to melanocortin-4 receptor expressing neurons and inhibits food intake. The basis for the reduced metabolic rate has been unknown. Here we show that leptin administered to leptin-deficient (ob/ob) mice results in a large increase in peripheral MSH levels; further, peripheral administration of an MSH analogue results in a reversal of their abnormally low metabolic rate, in an acceleration of weight loss during a fast, in partial restoration of thermoregulation in a cold challenge, and in inducing serum free fatty acid levels. These results support an important peripheral role for MSH in the integration of metabolism with appetite in response to perceived fat stores indicated by leptin levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure of humans and other mammals to hyperthermic conditions elicits many physiological responses to stress in various tissues leading to profound injuries, which eventually result in death. It has been suggested that hyperthermia may increase oxidative stress in tissues to form reactive oxygen species harmful to cellular functions. By using transgenic mice with human antioxidant genes, we demonstrate that the overproduction of glutathione peroxidase (GP, both extracellular and intracellular) leads to a thermosensitive phenotype, whereas the overproduction of Cu,Zn-superoxide dismutase has no effect on the thermosensitivity of transgenic mice. Induction of HSP70 in brain, lung, and muscle in GP transgenic mice at elevated temperature was significantly inhibited in comparison to normal animals. Measurement of peroxide production in regions normally displaying induction of HSP70 under hyperthermia revealed high levels of peroxides in normal mice and low levels in GP transgenic mice. There was also a significant difference between normal and intracellular GP transgenic mice in level of prostaglandin E2 in hypothalamus and cerebellum. These data suggest direct participation of peroxides in induction of cytoprotective proteins (HSP70) and cellular mechanisms regulating body temperature. GP transgenic mice provide a model for studying thermoregulation and processes involving actions of hydroxy and lipid peroxides in mammals.