3 resultados para THEOREMS
em National Center for Biotechnology Information - NCBI
Resumo:
Let a(x) be a real function with a regular growth as x --> infinity. [The precise technical assumption is that a(x) belongs to a Hardy field.] We establish sufficient growth conditions on a(x) so that the sequence ([a(n)])(infinity)(n=1) is a good averaging sequence in L2 for the pointwise ergodic theorem. A sequence (an) of positive integers is a good averaging sequence in L2 for the pointwise ergodic theorem if in any dynamical system (Omega, Sigma, m, T) for f [symbol, see text] in L2(Omega) the averages [equation, see text] converge for almost every omicron in. Our result implies that sequences like ([ndelta]), where delta > 1 and not an integer, ([n log n]), and ([n2/log n]) are good averaging sequences for L2. In fact, all the sequences we examine will turn out to be good averaging for Lp, p > 1; and even for L log L. We will also establish necessary and sufficient growth conditions on a(x) so that the sequence ([a(n)]) is good averaging for mean convergence. Note that for some a(x) (e.g., a(x) = log2 x), ([a(n)]) may be good for mean convergence without being good for pointwise convergence.
Resumo:
The fundamental question "Are sequential data random?" arises in myriad contexts, often with severe data length constraints. Furthermore, there is frequently a critical need to delineate nonrandom sequences in terms of closeness to randomness--e.g., to evaluate the efficacy of therapy in medicine. We address both these issues from a computable framework via a quantification of regularity. ApEn (approximate entropy), defining maximal randomness for sequences of arbitrary length, indicating the applicability to sequences as short as N = 5 points. An infinite sequence formulation of randomness is introduced that retains the operational (and computable) features of the finite case. In the infinite sequence setting, we indicate how the "foundational" definition of independence in probability theory, and the definition of normality in number theory, reduce to limit theorems without rates of convergence, from which we utilize ApEn to address rates of convergence (of a deficit from maximal randomness), refining the aforementioned concepts in a computationally essential manner. Representative applications among many are indicated to assess (i) random number generation output; (ii) well-shuffled arrangements; and (iii) (the quality of) bootstrap replicates.
Resumo:
The evolutionary stability of cooperation is a problem of fundamental importance for the biological and social sciences. Different claims have been made about this issue: whereas Axelrod and Hamilton's [Axelrod, R. & Hamilton, W. (1981) Science 211, 1390-1398] widely recognized conclusion is that cooperative rules such as "tit for tat" are evolutionarily stable strategies in the iterated prisoner's dilemma (IPD), Boyd and Lorberbaum [Boyd, R. & Lorberbaum, J. (1987) Nature (London) 327, 58-59] have claimed that no pure strategy is evolutionarily stable in this game. Here we explain why these claims are not contradictory by showing in what sense strategies in the IPD can and cannot be stable and by creating a conceptual framework that yields the type of evolutionary stability attainable in the IPD and in repeated games in general. Having established the relevant concept of stability, we report theorems on some basic properties of strategies that are stable in this sense. We first show that the IPD has "too many" such strategies, so that being stable does not discriminate among behavioral rules. Stable strategies differ, however, on a property that is crucial for their evolutionary survival--the size of the invasion they can resist. This property can be interpreted as a strategy's evolutionary robustness. Conditionally cooperative strategies such as tit for tat are the most robust. Cooperative behavior supported by these strategies is the most robust evolutionary equilibrium: the easiest to attain, and the hardest to disrupt.