3 resultados para TGF-[alpha]

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regenerative proliferation occurs in the inner-ear sensory epithelial of warm-blooded vertebrates after insult. To determine how this proliferation is controlled in the mature mammalian inner ear, several growth factors were tested for effects on progenitor-cell division in cultured mouse vestibular sensory epithelia. Cell proliferation was induced in the sensory epithelium by transforming growth factor alpha (TGF-alpha) in a dose-dependent manner. Proliferation was also induced by epidermal growth factor (EGF) when supplemented with insulin, but not EGF alone. These observations suggest that stimulation of the EGF receptors by TGF-alpha binding, or EGF (plus insulin) binding, stimulates cell proliferation in the mature mammalian vestibular sensory epithelium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In cell culture, type alpha transforming growth factor (TGF-alpha) stimulates epithelial cell growth, whereas TGF-beta 1 overrides this stimulatory effect and is growth inhibitory. Transgenic mice that overexpress TGF-alpha under control of the mouse mammary tumor virus (MMTV) promoter/enhancer exhibit mammary ductal hyperplasia and stochastic development of mammary carcinomas, a process that can be accelerated by administration of the chemical carcinogen 7,12-dimethylbenz[a]anthracene. MMTV-TGF-beta 1 transgenic mice display mammary ductal hypoplasia and do not develop mammary tumors. We report that in crossbreeding experiments involving the production of mice carrying both the MMTV-TGF-beta 1 and MMTV-TGF-alpha transgenes, there is marked suppression of mammary tumor formation and that MMTV-TGF-beta 1 transgenic mice are resistant to 7,12-dimethylbenz[a]anthracene-induced mammary tumor formation. These data demonstrate that overexpression of TGF-beta 1 in vivo can markedly suppress mammary tumor development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At least two kidney epithelial cell lines, the Madin-Darby canine kidney (MDCK) and the murine inner medullary collecting duct line mIMCD-3, can be induced to form branching tubular structures when cultured with hepatocyte growth factor (HGF) plus serum in collagen I gels. In our studies, whereas MDCK cells remained unable to form tubules in the presence of serum alone, mIMCD-3 cells formed impressive branching tubular structures with apparent lumens, suggesting the existence of specific factors in serum that are tubulogenic for mIMCD-3 cells but not for MDCK cells. Since normal serum does not contain enough HGF to induce tubulogenesis, these factors appeared to be substances other than HGF. This was also suggested by another observation: when MDCK cells or mIMCD-3 cells were cocultured under serum-free conditions with the embryonic kidney, both cell types formed branching tubular structures similar to those induced by HGF; however, only in the case of MDCK cells could this be inhibited by neutralizing antibodies against HGF. Thus, the embryonic kidney produces growth factors other than HGF capable of inducing tubule formation in the mIMCD-3 cells. Of a number of growth factors examined, transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) were found to be tubulogenic for mIMCD-3 cells. Whereas only HGF was a potent tubulogenic factor for MDCK cells, HGF, TGF-alpha, and EGF were potent tubulogenic factors for mIMCD-3 cells. Nevertheless, there were marked differences in the capacity of these tubulogenic factors to induce tubulation as well as branching events in those tubules that did form (HGF >> TGF-alpha > EGF). Thus, at least three different growth factors can induce tubulogenesis and branching in a specific epithelial cell in vitro (though to different degrees), and different epithelial cells that are capable of forming branching tubular structures demonstrate vastly different responses to tubulogenic growth factors. The results are discussed in the context of branching morphogenesis during epithelial tissue development.