8 resultados para TGA

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible relationship of selenium to immunological function which has been suggested for decades was investigated in studies on selenium metabolism in human T cells. One of the major 75Se-labeled selenoproteins detected was purified to homogeneity and shown to be a homodimer of 55-kDa subunits. Each subunit contained about 1 FAD and at least 0.74 Se. This protein proved to be thioredoxin reductase (TR) on the basis of its catalytic activities, cross-reactivity with anti-rat liver TR antibodies, and sequence identities of several tryptic peptides with the published deduced sequence of human placental TR. Physicochemical characteristics of T-cell TR were similar to those of a selenocysteine (Secys)-containing TR recently isolated from human lung adenocarcinoma cells. The sequence of a 12-residue 75Se-labeled tryptic peptide from T-cell TR was identical with a C-terminal-deduced sequence of human placental TR except that Secys was present in the position corresponding to TGA, previously thought to be the termination codon, and this was followed by Gly-499, the actual C-terminal amino acid. The presence of the unusual conserved Cys-Secys-Gly sequence at the C terminus of TR in addition to the redox active cysteines of the Cys-Val-Asn-Val-Gly-Cys motif in the FAD-binding region may account for the peroxidase activity and the relatively low substrate specificity of mammalian TRs. The finding that T-cell TR is a selenoenzyme that contains Se in a conserved C-terminal region provides another example of the role of selenium in a major antioxidant enzyme system (i.e., thioredoxin-thioredoxin reductase), in addition to the well-known glutathione peroxidase enzyme system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thioredoxin (Trx) and glutathione (GSH) systems are considered to be two major redox systems in animal cells. They are reduced by NADPH via Trx reductase (TR) or oxidized GSH (GSSG) reductase and further supply electrons for deoxyribonucleotide synthesis, antioxidant defense, and redox regulation of signal transduction, transcription, cell growth, and apoptosis. We cloned and characterized a pyridine nucleotide disulfide oxidoreductase, Trx and GSSG reductase (TGR), that exhibits specificity for both redox systems. This enzyme contains a selenocysteine residue encoded by the TGA codon. TGR can reduce Trx, GSSG, and a GSH-linked disulfide in in vitro assays. This unusual substrate specificity is achieved by an evolutionary conserved fusion of the TR and glutaredoxin domains. These observations, together with the biochemical probing and molecular modeling of the TGR structure, suggest a mechanism whereby the C-terminal selenotetrapeptide serves a role of a protein-linked GSSG and shuttles electrons from the disulfide center within the TR domain to either the glutaredoxin domain or Trx.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salicylic acid (SA) plays a critical signaling role in the activation of plant defense responses after pathogen attack. We have identified several potential components of the SA signaling pathway, including (i) the H2O2-scavenging enzymes catalase and ascorbate peroxidase, (ii) a high affinity SA-binding protein (SABP2), (iii) a SA-inducible protein kinase (SIPK), (iv) NPR1, an ankyrin repeat-containing protein that exhibits limited homology to IκBα and is required for SA signaling, and (v) members of the TGA/OBF family of bZIP transcription factors. These bZIP factors physically interact with NPR1 and bind the SA-responsive element in promoters of several defense genes, such as the pathogenesis-related 1 gene (PR-1). Recent studies have demonstrated that nitric oxide (NO) is another signal that activates defense responses after pathogen attack. NO has been shown to play a critical role in the activation of innate immune and inflammatory responses in animals. Increases in NO synthase (NOS)-like activity occurred in resistant but not susceptible tobacco after infection with tobacco mosaic virus. Here we demonstrate that this increase in activity participates in PR-1 gene induction. Two signaling molecules, cGMP and cyclic ADP ribose (cADPR), which function downstream of NO in animals, also appear to mediate plant defense gene activation (e.g., PR-1). Additionally, NO may activate PR-1 expression via an NO-dependent, cADPR-independent pathway. Several targets of NO in animals, including guanylate cyclase, aconitase, and mitogen-activated protein kinases (e.g., SIPK), are also modulated by NO in plants. Thus, at least portions of NO signaling pathways appear to be shared between plants and animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in htrII/sopII regions. This paper describes the first example that both HtrI and HtrII exist in the same halobacterial cell, confirming that different sensory rhodopsins SRI and SRII in the same organism have their own distinct transducers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleotide sequence of the human alpha-albumin gene, including 887 bp of the 5'-flanking region and 1311 bp of the 3-flanking region (24,454 in total), was determined from three overlapping lambda phage clones. The sequence spans 22,256 bp from the cap site to the polyadenylylation site, revealing a gene structure of 15 exons separated by 14 introns. The methionine initiation codon ATG is within exon 1; the termination codon TGA is within exon 14. Exon 15 is entirely untranslated and contains the polyadenylylation signal AATAAA. The deduced polypeptide chain is composed of a 21-amino-acid leader peptide, followed by 578 amino acids of the mature protein. There are seven repetitive DNA elements (Alu and Kpn) in the introns and 3-flanking region. The sizes of the 15 alpha-albumin exons match closely those of the albumin, alpha-fetoprotein, and vitamin D-binding protein genes. The exons are symmetrically placed within the three domains of the individual proteins, and they share a characteristic codon splitting pattern that is conserved among members of the gene family. The results provide strong evidence that alpha-albumin belongs to, and most likely completes with, the serum albumin gene family. Based on structural similarity, alpha-albumin appears to be most closely related to alpha-fetoprotein. The complete structure of this family of four tandemly linked genes provides a well-characterized approximately 200 kb locus in the 4q subcentromeric region of the human genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat skeletal muscle selenoprotein W cDNA was isolated and sequenced. The isolation strategy involved design of degenerate PCR primers from reverse translation of a partial peptide sequence. A reverse transcription-coupled PCR product from rat muscle mRNA was used to screen a muscle cDNA library prepared from selenium-supplemented rats. The cDNA sequence confirmed the known protein primary sequence, including a selenocysteine residue encoded by TGA, and identified residues needed to complete the protein sequence. RNA folding algorithms predict a stem-loop structure in the 3' untranslated region of the selenoprotein W mRNA that resembles selenocysteine insertion sequence (SE-CIS) elements identified in other selenocysteine coding cDNAs. Dietary regulation of selenoprotein W mRNA was examined in rat muscle. Dietary selenium at 0.1 ppm as selenite increased muscle mRNA 4-fold relative to a selenium-deficient diet. Higher dietary selenium produced no further increase in mRNA levels.