2 resultados para TESTICULAR DEVELOPMENT

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current theories of sexual differentiation maintain that ovarian estrogen prevents masculine development of the copulatory system in birds, whereas estrogen derived from testicular androgens promotes masculine sexual differentiation of neuroanatomy and sexual behavior in mammals. Paradoxically, some data suggest that the neural song system in zebra finches follows the mammalian pattern with estrogenic metabolites of testicular secretions causing masculine development. To test whether the removal of estrogen from males during early development would prevent the development of masculine song systems, zebra finches were treated embryonically with an inhibitor of estrogen synthesis. In addition, this treatment in genetic female zebra finches induced both functional ovarian and testicular tissue to develop, thus allowing the assessment of the direct effects of testicular secretions on song system development. In males, the inhibition of estrogen synthesis before hatching had a small but significant effect in demasculinizing one aspect of the neural song system. In treated females, the song systems remained morphologically feminine. These results suggest that masculinization of the song system is not determined solely by testicular androgens or their estrogenic metabolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The condition termed 46,XY complete gonadal dysgenesis is characterized by a completely female phenotype and streak gonads. In contrast, subjects with 46,XY partial gonadal dysgenesis and those with embryonic testicular regression sequence usually present ambiguous genitalia and a mix of Müllerian and Wolffian structures. In 46,XY partial gonadal dysgenesis gonadal histology shows evidence of incomplete testis determination. In 46,XY embryonic testicular regression sequence there is lack of gonadal tissue on both sides. Various lines of evidence suggest that embryonic testicular regression sequence is a variant form of 46,XY gonadal dysgenesis. The sex-determining region Y chromosome gene (SRY) encodes sequences for the testis-determining factor. To date germ-line mutations in SRY have been reported in approximately 20% of subjects with 46,XY complete gonadal dysgenesis. However, no germ-line mutations of SRY have been reported in subjects with the partial forms. We studied 20 subjects who presented either 46,XY partial gonadal dysgenesis or 46,XY embryonic testicular regression sequence. We examined the SRY gene and the minimum region of Y-specific DNA known to confer a male phenotype. The SRY-open reading frame (ORF) was normal in all subjects. However a de novo interstitial deletion 3' to the SRY-ORF was found in one subject. Although it is possible that the deletion was unrelated to the subject's phenotype, we propose that the deletion was responsible for the abnormal gonadal development by diminishing expression of SRY. We suggest that the deletion resulted either in the loss of sequences necessary for normal SRY expression or in a position effect that altered SRY expression. This case provides further evidence that deletions of the Y chromosome outside the SRY-ORF can result in either complete or incomplete sex reversal.