1 resultado para TEMPERATURE IONIC LIQUIDS
em National Center for Biotechnology Information - NCBI
Resumo:
In this paper I review the ways in which the glassy state is obtained both in nature and in materials science and highlight a "new twist"--the recent recognition of polymorphism within the glassy state. The formation of glass by continuous cooling (viscous slowdown) is then examined, the strong/fragile liquids classification is reviewed, and a new twist-the possibility that the slowdown is a result of an avoided critical point-is noted. The three canonical characteristics of relaxing liquids are correlated through the fragility. As a further new twist, the conversion of strong liquids to fragile liquids by pressure-induced coordination number increases is demonstrated. It is then shown that, for comparable systems, it is possible to have the same conversion accomplished via a first-order transition within the liquid state during quenching. This occurs in the systems in which "polyamorphism" (polymorphism in the glassy state) is observed, and the whole phenomenology is accounted for by Poole's bond-modified van der Waals model. The sudden loss of some liquid degrees of freedom through such weak first-order transitions is then related to the polyamorphic transition between native and denatured hydrated proteins, since the latter are also glass-forming systems--water-plasticized, hydrogen bond-cross-linked chain polymers (and single molecule glass formers). The circle is closed with a final new twist by noting that a short time scale phenomenon much studied by protein physicists-namely, the onset of a sharp change in d