33 resultados para TELOMERASE ACTIVITY
em National Center for Biotechnology Information - NCBI
Resumo:
Telomerase is a specialized reverse transcriptase consisting of both RNA and protein components. Previous characterization of yeast telomerase function in vivo identified four EST (for ever shorter telomeres) genes that, when mutated, result in the phenotypes expected for a defect in telomerase. Consistent with this genetic prediction, the EST2 gene has recently been shown to encode the catalytic component of telomerase. Using an in vitro assay, we show here that telomerase activity is present in extracts prepared from yeast strains carrying est1-Δ, est3-Δ, and cdc13–2est mutations. Therefore, while these three genes are necessary for telomerase function in vivo, they do not encode components essential for core catalytic activity. When Est2p, the one EST gene product found to be essential for catalytic activity, was immunoprecipitated from extracts, the telomerase RNA subunit was also specifically precipitated, supporting the conclusion that these two components are in a stable complex.
Resumo:
Conflicting reports have appeared concerning the cell cycle regulation of telomerase activity and its possible repression during quiescence and cell differentiation. We have reexamined these issues in an attempt to uncover the basis for the discrepancies. Variations in extracted telomerase activity during the cell cycle are not observed in cells sorted on the basis of DNA content. Variations are observed in cells synchronized using some biochemical cell cycle inhibitors, but only with those agents where cellular toxicity is evident. A progressive decline in telomerase activity is observed in cells whose growth rate is reduced from seven to eight population doublings per week to one to two doublings per week. Telomerase is largely absent in cells that truly exit the cell cycle and do not divide over the 7-day period. Although it is not necessary for all cell types to regulate telomerase in the same way, we conclude that in the immortal cultured cell lines examined, extracted telomerase activity does not change significantly during progression through the stages of the cell cycle. Telomerase activity generally correlates with growth rate and is repressed in cells that exit the cell cycle and become quiescent.
Resumo:
The immortalization of human cells is a critical step during tumorigenesis. In vitro, normal human somatic cells must overcome two proliferative blockades, senescence and crisis, to become immortal. Transformation with viral oncogenes extends the life span of human cells beyond senescence. Such transformed cells eventually succumb to crisis, a period of widespread cellular death that has been proposed to be the result of telomeric shortening. We now show that ectopic expression of the telomerase catalytic subunit (human telomerase reverse transcriptase or hTERT) and subsequent activation of telomerase can allow postsenescent cells to proliferate beyond crisis, the last known proliferative blockade to cellular immortality. Moreover, we demonstrate that alteration of the carboxyl terminus of human telomerase reverse transcriptase does not affect telomerase enzymatic activity but impedes the ability of this enzyme to maintain telomeres. Telomerase-positive cells expressing this mutant enzyme fail to undergo immortalization, further tightening the connection between telomere maintenance and immortalization.
Resumo:
Telomerase activity is readily detected in most cancer biopsies, but not in premalignant lesions or in normal tissue samples with a few exceptions that include germ cells and hemopoietic stem cells. Telomerase activity may, therefore, be a useful biomarker for diagnosis of malignancies and a target for inactivation in chemotherapy or gene therapy. These observations have led to the hypothesis that activation of telomerase may be an important step in tumorigenesis. To test this hypothesis, we studied telomerase activity in isogeneic samples of uncultured and cultured specimens of normal human uroepithelial cells (HUCs) and in uncultured and cultured biopsies of superficial and myoinvasive transitional cell carcinoma (TCC) of the bladder. Our results demonstrated that four of four TCC biopsies, representing both superficial and myoinvasive TCCs, were positive for telomerase activity, but all samples of uncultured HUC were telomerase negative. However, when the same normal HUC samples were established as proliferating cultures in vitro, telomerase activity was readily detected but usually at lower levels than in TCCs. Consistent with the above observation of the telomerase activity in HUCs, telomeres did not shorten during the HUC in vitro lifespan. Demonstration of telomerase in proliferating human epithelial cells in vitro was not restricted to HUCs, because it was also present in prostate and mammary cell cultures. Notably, telomerase activity was relatively low or undetectable in nonproliferating HUC cultures. These data do not support a model in which telomerase is inactive in normal cells and activated during tumorigenic transformation. Rather, these data support a model in which the detection of telomerase in TCC biopsies, but not uncultured HUC samples, reflects differences in proliferation between tumor and normal cells in vivo.
Resumo:
Cellular senescence is defined by the limited proliferative capacity of normal cultured cells. Immortal cells overcome this regulation and proliferate indefinitively. One step in the immortalization process may be reactivation of telomerase activity, a ribonucleoprotein complex, which, by de novo synthesized telomeric TTAGGG repeats, can prevent shortening of the telomeres. Here we show that immortal human skin keratinocytes, irrespective of whether they were immortalized by simian virus 40, human papillomavirus 16, or spontaneously, as well as cell lines established from human skin squamous cell carcinomas exhibit telomerase activity. Unexpectedly, four of nine samples of intact human skin also were telomerase positive. By dissecting the skin we could show that the dermis and cultured dermal fibroblasts were telomerase negative. The epidermis and cultured skin keratinocytes, however, reproducibly exhibited enzyme activity. By separating different cell layers of the epidermis this telomerase activity could be assigned to the proliferative basal cells. Thus, in addition to hematopoietic cells, the epidermis, another example of a permanently regenerating human tissue, provides a further exception of the hypothesis that all normal human somatic tissues are telomerase deficient. Instead, these data suggest that in addition to contributing to the permanent proliferation capacity of immortal and tumor-derived keratinocytes, telomerase activity may also play a similar role in the lifetime regenerative capacity of normal epidermis in vivo.
Resumo:
Telomerase is a ribonucleoprotein complex that is thought to add telomeric repeats onto the ends of chromosomes during the replicative phase of the cell cycle. We tested this hypothesis by arresting human tumor cell lines at different stages of the cell cycle. Induction of quiescence by serum deprivation did not affect telomerase activity. Cells arrested at the G1/S phase of the cell cycle showed similar levels of telomerase to asynchronous cultures; progression through the S phase was associated with increased telomerase activity. The highest level of telomerase activity was detected in S-phase cells. In contrast, cells arrested at G2/M phase of the cell cycle were almost devoid of telomerase activity. Diverse cell cycle blockers, including transforming growth factor beta1 and cytotoxic agents, also caused inhibition of telomerase activity. These results establish a direct link between telomerase activity and progression through the cell cycle.
Resumo:
The est1 mutant was previously identified because it is defective in telomere maintenance and displays a senescent phenotype. To see if Est1 might be a component of yeast telomerase, we examined immunoprecipitated Est1. The yeast telomerase RNA Tlc1 specifically coprecipitated with Est1. Furthermore, the Est1 immunoprecipitates contained a telomerase-like activity. As expected for yeast telomerase, the activity elongated telomeric primers, it required dGTP and dTTP but not dATP or dCTP, and it was sensitive to RNase A. Further evidence suggesting that the activity was telomerase was obtained from experiments using a TLC1-1 mutant strain, which has a mutant telomerase template containing dG residues. The activity immunoprecipitated from TLC1-1 mutant strains incorporated 32P-labeled dCTP, while activity from TLC1 strains did not. Use of different telomeric primer substrates revealed two distinguishable telomerase-like activities: one was dependent on TLC1, and one was not. The TLC1-independent activity may be due to a second yeast telomerase RNA, or it may be some other kind of activity.
Resumo:
Telomerase, a ribonucleic acid-protein complex, adds hexameric repeats of 5'-TTAGGG-3' to the ends of mammalian chromosomal DNA (telomeres) to compensate for the progressive loss that occurs with successive rounds of DNA replication. Although somatic cells do not express telomerase, germ cells and immortalized cells, including neoplastic cells, express this activity. To determine whether the phenotypic differentiation of immortalized cells is linked to the regulation of telomerase activity, terminal differentiation was induced in leukemic cell lines by diverse agents. A pronounced downregulation of telomerase activity was produced as a consequence of the differentiated status. The differentiation-inducing agents did not directly inhibit telomerase activity, suggesting that the inhibition of telomerase activity is in response to induction of differentiation. The loss of telomerase activity was not due to the production of an inhibitor, since extracts from differentiated cells did not cause inhibition of telomerase activity. By using additional cell lineages including epithelial and embryonal stem cells, down-regulation of telomerase activity was found to be a general response to the induction of differentiation. These findings provide the first direct link between telomerase activity and terminal differentiation and may provide a model to study regulation of telomerase activity.
Resumo:
Bone marrow and peripheral blood leukocytes from 19 leukemia patients were found to contain telomerase activity detectable by a PCR-based assay. Telomerase was also detectable in nonmalignant bone marrow and peripheral blood leukocytes from normal donors, including fractions enriched for granulocytes, T lymphocytes, and monocytes/B cells. Semiquantitative comparison revealed considerable overlap between telomerase activities in samples from normal subjects and leukemia patients, confounding evaluation of the role of telomerase in this disease. These data indicate that human telomerase is not restricted to immortal cells and suggest that the somatic expression of this enzyme may be more widespread than was previously inferred from the decline of human telomeres.
Resumo:
Although human and rodent telomeres have been studied extensively, very little is known about telomere dynamics in other vertebrates. Moreover, our current dependence on mice as a model for human tumorigenesis and aging poses a problem because human and mouse telomere biology is very different. To explore whether chickens might provide a more useful model, we have examined telomerase activity and telomere length in chicken tissues as well as in primary cell cultures. Although chicken telomeres resemble human telomeres in that they are 8–20 kb in length, the distribution of telomerase activity in chickens resembles what is found in mice. Active enzyme is present in germline tissue as well as in a wide range of somatic tissues. Because chicken cells exhibit extremely low rates of spontaneous immortalization, this finding indicates that constitutive telomerase expression does not necessarily lead to an increased immortalization frequency. Finally, we found that telomerase activity is greatly down-regulated when primary cultures are established from chicken embryos. Although this down-regulation explains the telomere loss and replicative senescence that we observed in fibroblast cultures, it raises questions concerning how relevant studies of senescence in primary cell cultures are to aging in whole animals.
Resumo:
The role and even the existence of myocyte proliferation in the adult heart remain controversial. Documentation of cell cycle regulators, DNA synthesis, and mitotic images has not modified the view that myocardial growth can only occur from hypertrophy of an irreplaceable population of differentiated myocytes. To improve understanding the biology of the heart and obtain supportive evidence of myocyte replication, three indices of cell proliferation were analyzed in dogs affected by a progressive deterioration of cardiac performance and dilated cardiomyopathy. The magnitude of cycling myocytes was evaluated by the expression of Ki67 in nuclei. Ki67 labeling of left ventricular myocytes increased 5-fold, 12-fold, and 17-fold with the onset of moderate and severe ventricular dysfunction and overt failure, respectively. Telomerase activity in vivo is present only in multiplying cells; this enzyme increased 2.4-fold and 3.1-fold in the decompensated heart, preserving telomeric length in myocytes. The contribution of cycling myocytes to telomerase activity was determined by the colocalization of Ki67 and telomerase in myocyte nuclei. More than 50% of Ki67-positive cells expressed telomerase in the overloaded myocardium, suggesting that these myocytes were the morphological counterpart of the biochemical assay of enzyme activity. Moreover, we report that 20–30% of canine myocytes were telomerase competent, and this value was not changed by cardiac failure. In conclusion, the enhanced expression of Ki67 and telomerase activity, in combination with Ki67-telomerase labeling of myocyte nuclei, support the notion that myocyte proliferation contributes to cardiac hypertrophy of the diseased heart.
Resumo:
We have identified telomerase activity in extracts of three evolutionarily diverse kinetoplastid species: Trypanosoma brucei, Leishmania major, and Leishmania tarentolae. Telomerase activity was initially detected in extracts from insect form cells of all three kinetoplastid species by using a modification of the one-tube telomere repeat amplification protocol [Kim, N., et al. (1994) Science 266, 2011–2015], although better results were subsequently achieved with the two-tube telomere repeat amplification protocol [Autexier, C., Pruzan, R., Funk, W. & Greider, C. (1996) EMBO J. 15, 5928–5935]. The activity in T. brucei extracts was sufficiently robust to enable its detection in a direct assay of telomerase; enzyme processivity was found to be relatively low. The in vitro properties of telomerase suggest a possible templating domain sequence for the telomerase RNA of T. brucei. Telomerase activity is likely to contribute to telomere maintenance in these parasitic organisms and provides a new target for chemotherapeutic intervention.
Resumo:
Telomerase is an RNA-directed DNA polymerase, composed of RNA and protein subunits, that replicates the telomere ends of linear eukaryotic chromosomes. Using a genetic strategy described here, we identify the product of the EST2 gene, Est2p, as a subunit of telomerase in the yeast Saccharomyces cerevisiae. Est2p is required for enzyme catalysis, as mutations in EST2 were found to result in the absence of telomerase activity. Immunochemical experiments show that Est2p is an integral subunit of the telomerase enzyme. Critical catalytic residues present in RNA-directed DNA polymerases are conserved in Est2p; mutation of one such residue abolishes telomerase activity, suggesting a direct catalytic role for Est2p.
Resumo:
Telomerase, a ribonucleoprotein complex, adds hexameric repeats called “telomeres” to the growing ends of chromosomal DNA. Characterization of mammalian telomerase has been elusive because of its low level of expression. We describe a bioinformatics approach to enrich and characterize the human telomerase complex. Using local sequence homology search methods, we detected similarity of the Tetrahymena p80 subunit of telomerase with the autoantigen Ro60. Antibodies to Ro60 immunoprecipitated the telomerase activity. Ro60 and p80 proteins were cross-recognizable by antibodies to either protein. Telomerase activity and the RNA component of telomerase complex were localized to a doublet in a native gel from the Ro60 antibody-precipitated material. The enriched material showed specific binding to a TTA GGG probe in vitro in an RNA template-dependent manner. Polyclonal antibodies to the doublet also immunoprecipitated the telomerase activity. These results suggest an evolutionary conservation of the telomerase proteins.