25 resultados para Syndromes
em National Center for Biotechnology Information - NCBI
Resumo:
We examined the MLL genomic translocation breakpoint in acute myeloid leukemia of infant twins. Southern blot analysis in both cases showed two identical MLL gene rearrangements indicating chromosomal translocation. The rearrangements were detectable in the second twin before signs of clinical disease and the intensity relative to the normal fragment indicated that the translocation was not constitutional. Fluorescence in situ hybridization with an MLL-specific probe and karyotype analyses suggested t(11;22)(q23;q11.2) disrupting MLL. Known 5′ sequence from MLL but unknown 3′ sequence from chromosome band 22q11.2 formed the breakpoint junction on the der(11) chromosome. We used panhandle variant PCR to clone the translocation breakpoint. By ligating a single-stranded oligonucleotide that was homologous to known 5′ MLL genomic sequence to the 5′ ends of BamHI-digested DNA through a bridging oligonucleotide, we formed the stem–loop template for panhandle variant PCR which yielded products of 3.9 kb. The MLL genomic breakpoint was in intron 7. The sequence of the partner DNA from band 22q11.2 was identical to the hCDCrel (human cell division cycle related) gene that maps to the region commonly deleted in DiGeorge and velocardiofacial syndromes. Both MLL and hCDCrel contained homologous CT, TTTGTG, and GAA sequences within a few base pairs of their respective breakpoints, which may have been important in uniting these two genes by translocation. Reverse transcriptase-PCR amplified an in-frame fusion of MLL exon 7 to hCDCrel exon 3, indicating that an MLL-hCDCrel chimeric mRNA had been transcribed. Panhandle variant PCR is a powerful strategy for cloning translocation breakpoints where the partner gene is undetermined. This application of the method identified a region of chromosome band 22q11.2 involved in both leukemia and a constitutional disorder.
Resumo:
Germ-line missense mutations of the receptor-like tyrosine kinase ret are the causative genetic event of the multiple endocrine neoplasia (MEN) type 2A and type 2B syndromes and of the familial medullary thyroid carcinoma. We have used the rat pheochromocytoma cell line, PC12, as a model system to investigate the mechanism or mechanisms by which expression of activated ret alleles contributes to the neoplastic phenotype in neuroendocrine cells. Here we show that stable expression of ret mutants (MEN2A and MEN2B alleles) in PC12 cells causes a dramatic conversion from a round to a flat morphology, accompanied by the induction of genes belonging to the early as well as the delayed response to nerve growth factor. However, in the transfected PC12 cells, the continuous expression of neuronal specific genes is not associated with the suppression of cell proliferation. Furthermore, expression of ret mutants renders PC12 cells unresponsive to nerve growth factor-induced inhibition of proliferation. These results suggest that induction of an aberrant pattern of differentiation, accompanied by unresponsiveness to growth-inhibitory physiological signals, may be part of the mechanism of action of activated ret alleles in the pathogenesis of neuroendocrine tumors associated with MEN2 syndromes.
Resumo:
Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p6H deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p6H deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profound abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p6H deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p6H deletion homozygotes. Because EtNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p6H deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans.
Resumo:
Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson–Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncysteine mutations, the mechanism of receptor activation remains unclear. We examined the effect of two of these mutations, W290G and T341P, on receptor dimerization and activation. These mutations resulted in cellular transformation when expressed as FGFR2/Neu chimeric receptors. Additionally, in full-length FGFR2, the mutations induced receptor dimerization and elevated levels of tyrosine kinase activity. Interestingly, transformation by the chimeric receptors, dimerization, and enhanced kinase activity were all abolished if either the W290G or the T341P mutation was expressed in conjunction with mutations that eliminate the disulfide bond in the third immunoglobulin-like domain (Ig-3). These results demonstrate a requirement for the Ig-3 cysteine residues in the activation of FGFR2 by noncysteine mutations. Molecular modeling also reveals that noncysteine mutations may activate FGFR2 by altering the conformation of the Ig-3 domain near the disulfide bond, preventing the formation of an intramolecular bond. This allows the unbonded cysteine residues to participate in intermolecular disulfide bonding, resulting in constitutive activation of the receptor.
Resumo:
The mouse Snrpn gene encodes the Smn protein, which is involved in RNA splicing. The gene maps to a region in the central part of chromosome 7 that is syntenic to the Prader–Willi/Angelman syndromes (PWS-AS) region on human chromosome 15q11-q13. The mouse gene, like its human counterpart, is imprinted and paternally expressed, primarily in brain and heart. We provide here a detailed description of the structural features and differential methylation pattern of the gene. We have identified a maternally methylated region at the 5′ end (DMR1), which correlates inversely with the Snrpn paternal expression. We also describe a region at the 3′ end of the gene (DMR2) that is preferentially methylated on the paternal allele. Analysis of Snrpn mRNA levels in a methylase-deficient mouse embryo revealed that maternal methylation of DMR1 may play a role in silencing the maternal allele. Yet both regions, DMR1 and DMR2, inherit the parental-specific methylation profile from the gametes. This methylation pattern is erased in 12.5-days postcoitum (dpc) primordial germ cells and reestablished during gametogenesis. DMR1 is remethylated during oogenesis, whereas DMR2 is remethylated during spermatogenesis. Once established, these methylation patterns are transmitted to the embryo and maintained, protected from methylation changes during embryogenesis and cell differentiation. Transfections of DMR1 and DMR2 into embryonic stem cells and injection into pronuclei of fertilized eggs reveal that embryonic cells lack the capacity to establish anew the differential methylation pattern of Snrpn. That all PWS patients lack DMR1, together with the overall high resemblance of the mouse gene to the human SNRPN, offers an excellent experimental tool to study the regional control of this imprinted chromosomal domain.
Resumo:
Pallido-ponto-nigral degeneration (PPND) is one of the most well characterized familial neurodegenerative disorders linked to chromosome 17q21–22. These hereditary disorders are known collectively as frontotemporal dementia (FTD) and parkinsonism linked to chromosome 17 (FTDP-17). Although the clinical features and associated regional variations in the neuronal loss observed in different FTDP-17 kindreds are diverse, the diagnostic lesions of FTDP-17 brains are tau-rich filaments in the cytoplasm of specific subpopulations of neurons and glial cells. The microtubule associated protein (tau) gene is located on chromosome 17q21–22. For these reasons, we investigated the possibility that PPND and other FTDP-17 syndromes might be caused by mutations in the tau gene. Two missense mutations in exon 10 of the tau gene that segregate with disease, Asn279Lys in the PPND kindred and Pro301Leu in four other FTDP-17 kindreds, were found. A third mutation was found in the intron adjacent to the 3′ splice site of exon 10 in patients from another FTDP-17 family. Transcripts that contain exon 10 encode tau isoforms with four microtubule (MT)-binding repeats (4Rtau) as opposed to tau isoforms with three MT-binding repeats (3Rtau). The insoluble tau aggregates isolated from brains of patients with each mutation were analyzed by immunoblotting using tau-specific antibodies. For each of three mutations, abnormal tau with an apparent Mr of 64 and 69 was observed. The dephosphorylated material comigrated with tau isoforms containing exon 10 having four MT-binding repeats but not with 3Rtau. Thus, the brains of patients with both the missense mutations and the splice junction mutation contain aggregates of insoluble 4Rtau in filamentous inclusions, which may lead to neurodegeneration.
Resumo:
Obesity is a complex disease, and multiple genes contribute to the trait. The description of five genes (ob, db, tub, Ay, and fat) responsible for distinct syndromes of spontaneous monogenic obesity in mice has advanced our knowledge of the genetics of obesity. However, many other genes involved in the expression of this disease remain to be determined. We report here the identification of an additional class of genes involved in the regulation of adipose tissue mass. These genes encode receptors mediating leukocyte adhesion. Mice deficient in intercellular adhesion molecule-1 became spontaneously obese in old age on normal mouse chow or at a young age when provided with a diet rich in fat. Mice deficient in the counterreceptor for intercellular adhesion molecule-1, the leukocyte integrin αMβ2 (Mac-1), showed a similar obesity phenotype. Since all mice consumed approximately the same amount of food as controls, the leukocyte function appears to be in regulating lipid metabolism and/or energy expenditure. Our results indicate that (i) leukocytes play a role in preventing excess body fat deposition and (ii) defects in leukocyte adhesion receptors can result in obesity.
Resumo:
Superoxide-mediated clastogenesis is characteristic for various chronic inflammatory diseases with autoimmune reactions and probably plays a role in radiation-induced clastogenesis and in the congenital breakage syndromes. It is consistently prevented by exogenous superoxide dismutase (SOD), but not by heat-inactivated SOD, indicating that the anticlastogenic effect is related to the catalytic function of the enzyme. Increased superoxide production by activated monocytes/macrophages is followed by release of more long-lived metabolites, so-called clastogenic factors, which contain lipid peroxidation products, unusual nucleotides of inosine, and cytokines such as tumor necrosis factor α. Since these components are not only clastogenic, but can stimulate further superoxide production by monocytes and neutrophils, the genotoxic effects are self-sustaining. It is shown here that anticlastogenic effects of exogenous SOD are preserved despite extensive washing of the cells and removal of all extracellular SOD. Using flow cytometry and confocal laser microscopy, rapid adherence of the fluorescently labeled enzyme to the cell surface could be observed with slow uptake into the cell during the following hours. The degree of labeling was concentration and time dependent. It was most important for monocytes, compared with lymphocytes, neutrophils, and fibroblasts. The cytochrome c assay showed significantly diminished O2− production by monocytes, pretreated with SOD and washed thereafter. The preferential and rapid binding of SOD to monocytes may be of importance not only for the superoxide-mediated genotoxic effects, described above, but also from a therapeutic standpoint. It can explain the observation that beneficial effects of injected SOD lasted for weeks and months despite rapid clearance of the enzyme from the blood stream according to pharmacodynamic studies.
Resumo:
Cancer cell genomes contain alterations beyond known etiologic events, but their total number has been unknown at even the order of magnitude level. By sampling colorectal premalignant polyp and carcinoma cell genomes through use of the technique inter-(simple sequence repeat) PCR, we have found genomic alterations to be considerably more abundant than expected, with the mean number of genomic events per carcinoma cell totaling approximately 11,000. Colonic polyps early in the tumor progression pathway showed similar numbers of events. These results indicate that, as with certain hereditary cancer syndromes, genomic destabilization is an early step in sporadic tumor development. Together these results support the model of genomic instability being a cause rather than an effect of malignancy, facilitating vastly accelerated somatic cell evolution, with the observed orderly steps of the colon cancer progression pathway reflecting the consequences of natural selection.
Resumo:
The region of human chromosome 22q11 is prone to rearrangements. The resulting chromosomal abnormalities are involved in Velo-cardio-facial and DiGeorge syndromes (VCFS and DGS) (deletions), “cat eye” syndrome (duplications), and certain types of tumors (translocations). As a prelude to the development of mouse models for VCFS/DGS by generating targeted deletions in the mouse genome, we examined the organization of genes from human chromosome 22q11 in the mouse. Using genetic linkage analysis and detailed physical mapping, we show that genes from a relatively small region of human 22q11 are distributed on three mouse chromosomes (MMU6, MMU10, and MMU16). Furthermore, although the region corresponding to about 2.5 megabases of the VCFS/DGS critical region is located on mouse chromosome 16, the relative organization of the region is quite different from that in humans. Our results show that the instability of the 22q11 region is not restricted to humans but may have been present throughout evolution. The results also underscore the importance of detailed comparative mapping of genes in mice and humans as a prerequisite for the development of mouse models of human diseases involving chromosomal rearrangements.
Resumo:
Hemizygous interstitial deletions in human chromosome 22q11 are associated with velocardiofacial syndrome and DiGeorge syndrome and lead to multiple congenital abnormalities, including cardiovascular defects. The gene(s) responsible for these disorders is thought to reside in a 1.5-Mb region of 22q11 in which 27 genes have been identified. We have used Cre-mediated recombination of LoxP sites in embryonic stem cells and mice to generate a 550-kb deletion encompassing 16 of these genes in the corresponding region on mouse chromosome 16. Mice heterozygous for this deletion are normal and do not exhibit cardiovascular abnormalities. Because mice with a larger deletion on mouse chromosome 16 do have heart defects, the results allow us to exclude these 16 genes as being solely, or in combination among themselves, responsible for the cardiovascular abnormalities in velocardiofacial/DiGeorge syndrome. We also generated mice with a duplication of the 16 genes that may help dissect the genetic basis of “cat eye” and derivative 22 syndromes that are characterized by extra copies of portions of 22q11, including these 16 genes. We also describe a strategy for selecting cell lines with defined chromosomal rearrangements. The method is based on reconstitution of a dominant selection marker after Cre-mediated recombination of LoxP sites. Therefore it should be widely applicable to many cell lines.
Resumo:
There is increasing recognition that stochastic processes regulate highly predictable patterns of gene expression in developing organisms, but the implications of stochastic gene expression for understanding haploinsufficiency remain largely unexplored. We have used simulations of stochastic gene expression to illustrate that gene copy number and expression deactivation rates are important variables in achieving predictable outcomes. In gene expression systems with non-zero expression deactivation rates, diploid systems had a higher probability of uninterrupted gene expression than haploid systems and were more successful at maintaining gene product above a very low threshold. Systems with relatively rapid expression deactivation rates (unstable gene expression) had more predictable responses to a gradient of inducer than systems with slow or zero expression deactivation rates (stable gene expression), and diploid systems were more predictable than haploid, with or without dosage compensation. We suggest that null mutations of a single allele in a diploid organism could decrease the probability of gene expression and present the hypothesis that some haploinsufficiency syndromes might result from an increased susceptibility to stochastic delays of gene initiation or interruptions of gene expression.
Resumo:
Chromosome 7q22 has been the focus of many cytogenetic and molecular studies aimed at delineating regions commonly deleted in myeloid leukemias and myelodysplastic syndromes. We have compared a gene-dense, GC-rich sub-region of 7q22 with the orthologous region on mouse chromosome 5. A physical map of 640 kb of genomic DNA from mouse chromosome 5 was derived from a series of overlapping bacterial artificial chromosomes. A 296 kb segment from the physical map, spanning Ache to Tfr2, was compared with 267 kb of human sequence. We identified a conserved linkage of 12 genes including an open reading frame flanked by Ache and Asr2, a novel cation-chloride cotransporter interacting protein Cip1, Ephb4, Zan and Perq1. While some of these genes have been previously described, in each case we present new data derived from our comparative sequence analysis. Adjacent unfinished sequence data from the mouse contains an orthologous block of 10 additional genes including three novel cDNA sequences that we subsequently mapped to human 7q22. Methods for displaying comparative genomic information, including unfinished sequence data, are becoming increasingly important. We supplement our printed comparative analysis with a new, Web-based program called Laj (local alignments with java). Laj provides interactive access to archived pairwise sequence alignments via the WWW. It displays synchronized views of a dot-plot, a percent identity plot, a nucleotide-level local alignment and a variety of relevant annotations. Our mouse–human comparison can be viewed at http://web.uvic.ca/~bioweb/laj.html. Laj is available at http://bio.cse.psu.edu/, along with online documentation and additional examples of annotated genomic regions.
Resumo:
Intercellular signaling by fibroblast growth factors plays vital roles during embryogenesis. Mice deficient for fibroblast growth factor receptors (FgfRs) show abnormalities in early gastrulation and implantation, disruptions in epithelial–mesenchymal interactions, as well as profound defects in membranous and endochondrial bone formation. Activating FGFR mutations are the underlying cause of several craniosynostoses and dwarfism syndromes in humans. Here we show that a heterozygotic abrogation of FgfR2-exon 9 (IIIc) in mice causes a splicing switch, resulting in a gain-of-function mutation. The consequences are neonatal growth retardation and death, coronal synostosis, ocular proptosis, precocious sternal fusion, and abnormalities in secondary branching in several organs that undergo branching morphogenesis. This phenotype has strong parallels to some Apert's and Pfeiffer's syndrome patients.
Resumo:
Targeted gene disruption in the murine TOP3β gene-encoding DNA topoisomerase IIIβ was carried out. In contrast to the embryonic lethality of mutant mice lacking DNA topoisomerase IIIα, top3β−/− nulls are viable and grow to maturity with no apparent defects. Mice lacking DNA topoisomerase IIIβ have a shorter life expectancy than their wild-type littermates, however. The mean lifespan of the top3β−/− mice is about 15 months, whereas that of their wild-type littermates is longer than 2 years. Mortality of the top3β−/− nulls appears to correlate with lesions in multiple organs, including hypertrophy of the spleen and submandibular lymph nodes, glomerulonephritis, and perivascular infiltrates in various organs. Because the DNA topoisomerase III isozymes are likely to interact with helicases of the RecQ family, enzymes that include the determinants of human Bloom, Werner, and Rothmund–Thomson syndromes, the shortened lifespan of top3β−/− mice points to the possibility that the DNA topoisomerase III isozymes might be involved in the pathogenesis of progeroid syndromes caused by defective RecQ helicases.