135 resultados para Synaptic vesicle recycling
em National Center for Biotechnology Information - NCBI
Resumo:
Recycling of vesicles of the regulated secretory pathway presumably involves passage through an early endosomal compartment as an intermediate step. To learn more about the involvement of endosomes in the recycling of synaptic and secretory vesicles we studied in vitro fusion of early endosomes derived from pheochromocytoma (PC12) cells. Fusion was not affected by cleavage of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin and syntaxin 1 that operate at the exocytotic limb of the pathway. Furthermore, fusion was inhibited by the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid but not by the slow Ca2+ chelator EGTA. Endosome fusion was restored by the addition of Ca2+ with an optimum at a free Ca2+ concentration of 0.3 × 10−6 M. Other divalent cations did not substitute for Ca2+. A membrane-permeant EGTA derivative caused inhibition of fusion, which was reversed by addition of Ca2+. We conclude that the fusion of early endosomes participating in the recycling of synaptic and neurosecretory vesicles is mediated by a set of SNAREs distinct from those involved in exocytosis and requires the local release of Ca2+ from the endosomal interior.
Resumo:
Alternative models to describe the endocytosis phase of synaptic vesicle recycling are associated with time scales of vesicle recovery ranging from milliseconds to tens of seconds. There have been suggestions that one of the major models, envisioned as a slow process that occurs only after complete fusion of the vesicle membrane with the neurolemma, might be applicable only under conditions of heavy, nonphysiological stimulation. Using FM 1-43 and similar fluorescent probes to label recycling synaptic vesicles in rat hippocampal neurons, we have measured the kinetics of endocytosis with a wide range of action-potential-driven exocytotic loads. Our results indicate that when either 5% or 25% of the vesicle pool is used, vesicles are recovered with a half-time on the order of 20 s (24 degrees C). This endocytosis rate was not influenced by operations designed to alter intracellular Ca2+ during membrane retrieval, suggesting that residual Ca2+ after strong stimuli probably does not greatly retard endocytosis. Finally, we have shown that vesicle-destaining kinetics are not strongly influenced by the substantially differing rates at which two marker dyes tested dissociate from membranes. This observation suggests that vesicles remain open long enough for essentially complete dissociation of even the slower dye (a few seconds) or, alternatively, that both dyes readily escape vesicle membrane by lateral diffusion through any exocytotic opening. These data seem most consistent with applicability of the slow-endocytosis, complete-fusion model at low as well as high levels of exocytosis.
Resumo:
A Ca2+-dependent synaptic vesicle-recycling pathway emanating from the plasma membrane adjacent to the dense body at the active zone has been demonstrated by blocking pinch-off of recycling membrane by using the Drosophila mutant, shibire. Exposure of wild-type Drosophila synapses to low Ca2+/high Mg2+ saline is shown here to block this active zone recycling pathway at the stage in which invaginations of the plasma membrane develop adjacent to the dense body. These observations, in combination with our previous demonstration that exposure to high Ca2+ causes “docked” vesicles to accumulate in the identical location where active zone endocytosis occurs, suggest the possibility that a vesicle-recycling pathway emanating from the active zone may exist that is stimulated by exposure to elevated Ca2+, thereby causing an increase in vesicle recycling, and is suppressed by exposure to low Ca2+ saline, thereby blocking newly forming vesicles at the invagination stage. The presence of a Ca2+-dependent endocytotic pathway at the active zone opens up the following possibilities: (i) electron microscopic omega-shaped images (and their equivalent, freeze fracture dimples) observed at the active zone adjacent to the dense body could represent endocytotic images (newly forming vesicles) rather than exocytotic images; (ii) vesicles observed attached to the plasma membrane adjacent to the dense body could represent newly formed vesicles rather than vesicles “docked” for release of transmitter.
Resumo:
Tetanus neurotoxin causes the spastic paralysis of tetanus by blocking neurotransmitter release at inhibitory synapses of the spinal cord. This is due to the penetration of the toxin inside the neuronal cytosol where it cleaves specifically VAMP/synaptobrevin, an essential component of the neuroexocytosis apparatus. Here we show that tetanus neurotoxin is internalized inside the lumen of small synaptic vesicles following the process of vesicle reuptake. Vesicle acidification is essential for the toxin translocation in the cytosol, which results in the proteolytic cleavage of VAMP/synaptobrevin and block of exocytosis.
Resumo:
Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent γ-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.
Resumo:
Zinc transporter-3 (ZnT-3), a member of a growing family of mammalian zinc transporters, is expressed in regions of the brain that are rich in histochemically reactive zinc (as revealed by the Timm’s stain), including entorhinal cortex, amygdala, and hippocampus. ZnT-3 protein is most abundant in the zinc-enriched mossy fibers that project from the dentate granule cells to hilar and CA3 pyramidal neurons. We show here by electron microscopy that ZnT-3 decorates the membranes of all clear, small, round synaptic vesicles (SVs) in the mossy fiber boutons of both mouse and monkey. Furthermore, up to 60–80% of these SVs contain Timm’s-stainable zinc. The coincidence of ZnT-3 on the membranes of SVs that accumulate zinc, and its homology with known zinc transporters, suggest that ZnT-3 is responsible for the transport of zinc into SVs, and hence for the ability of these neurons to release zinc upon excitation.
Resumo:
The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can be involved in multiple protein–protein interactions via a src homology 3 (SH3) domain at the C terminus and two predicted coiled-coil stretches. Coprecipitation studies and blot overlay analyses revealed that syndapin I binds the brain-specific proteins dynamin I, synaptojanin, and synapsin I via an SH3 domain-specific interaction. Coimmunoprecipitation of dynamin I with antibodies recognizing syndapin I and colocalization of syndapin I with dynamin I at vesicular structures in primary neurons indicate that syndapin I associates with dynamin I in vivo and may play a role in synaptic vesicle endocytosis. Furthermore, syndapin I associates with the neural Wiskott-Aldrich syndrome protein, an actin-depolymerizing protein that regulates cytoskeletal rearrangement. These characteristics of syndapin I suggest a molecular link between cytoskeletal dynamics and synaptic vesicle recycling in the nerve terminal.
Resumo:
Parkinson's disease is a common neurodegenerative disorder in which familial-linked genes have provided novel insights into the pathogenesis of this disorder. Mutations in Parkin, a ring-finger-containing protein of unknown function, are implicated in the pathogenesis of autosomal recessive familial Parkinson's disease. Here, we show that Parkin binds to the E2 ubiquitin-conjugating human enzyme 8 (UbcH8) through its C-terminal ring-finger. Parkin has ubiquitin–protein ligase activity in the presence of UbcH8. Parkin also ubiquitinates itself and promotes its own degradation. We also identify and show that the synaptic vesicle-associated protein, CDCrel-1, interacts with Parkin through its ring-finger domains. Furthermore, Parkin ubiquitinates and promotes the degradation of CDCrel-1. Familial-linked mutations disrupt the ubiquitin–protein ligase function of Parkin and impair Parkin and CDCrel-1 degradation. These results suggest that Parkin functions as an E3 ubiquitin–protein ligase through its ring domains and that it may control protein levels via ubiquitination. The loss of Parkin's ubiquitin–protein ligase function in familial-linked mutations suggests that this may be the cause of familial autosomal recessive Parkinson's disease.
Resumo:
The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca2+-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP−/− mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction ∼10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.
Resumo:
We analyzed whether synaptic membrane trafficking proteins are substrates for casein kinase II, calcium/calmodulin-dependent protein kinase II, and cAMP-dependent protein kinase (PKA), three kinases implicated in the modulation of synaptic transmission. Each kinase phosphorylates a specific set of the vesicle proteins syntaxin 1A, N-ethylmaleimide-sensitive factor (NSF), vesicle-associated membrane protein (VAMP), synaptosome-associated 25-kDa protein (SNAP-25), n-sec1, alpha soluble NSF attachment protein (alpha SNAP), and synaptotagmin. VAMP is phosphorylated by calcium/calmodulin-dependent protein kinase II on serine 61. alpha SNAP is phosphorylated by PKA; however, the beta SNAP isoform is phosphorylated only 20% as efficiently. alpha SNAP phosphorylated by PKA binds to the core docking and fusion complex 10 times weaker than the dephosphorylated form. These studies provide a first glimpse at regulatory events that may be important in modulating neurotransmitter release during learning and memory.
Resumo:
We recorded miniature endplate currents (mEPCs) using simultaneous voltage clamp and extracellular methods, allowing correction for time course measurement errors. We obtained a 20-80% rise time (tr) of approximately 80 micros at 22 degrees C, shorter than any previously reported values, and tr variability (SD) with an upper limit of 25-30 micros. Extracellular electrode pressure can increase tr and its variability by 2- to 3-fold. Using Monte Carlo simulations, we modeled passive acetylcholine diffusion through a vesicle fusion pore expanding radially at 25 nm x ms(-1) (rapid, from endplate omega figure appearance) or 0.275 nm x ms(-1) (slow, from mast cell exocytosis). Simulated mEPCs obtained with rapid expansion reproduced tr and the overall shape of our experimental mEPCs, and were similar to simulated mEPCs obtained with instant acetylcholine release. We conclude that passive transmitter diffusion, coupled with rapid expansion of the fusion pore, is sufficient to explain the time course of experimentally measured synaptic currents with trs of less than 100 micros.
Resumo:
Synaptophysin (syp I) is a synaptic vesicle membrane protein that constitutes approximately 7% of the total vesicle protein. Multiple lines of evidence implicate syp I in a number of nerve terminal functions. To test these, we have disrupted the murine Syp I gene. Mutant mice lacking syp I were viable and fertile. No changes in the structure and protein composition of the mutant brains were observed except for a decrease in synaptobrevin/VAMP II. Synaptic transmission was normal with no detectable changes in synaptic plasticity or the probability of release. Our data demonstrate that one of the major synaptic vesicle membrane proteins is not essential for synaptic transmission, suggesting that its function is either redundant or that it has a more subtle function not apparent in the assays used.
Resumo:
Amphiphysin, a major autoantigen in paraneoplastic Stiff-Man syndrome, is an SH3 domain-containing neuronal protein, concentrated in nerve terminals. Here, we demonstrate a specific, SH3 domain-mediated, interaction between amphiphysin and dynamin by gel overlay and affinity chromatography. In addition, we show that the two proteins are colocalized in nerve terminals and are coprecipitated from brain extracts consistent with their interactions in situ. We also report that a region of amphiphysin distinct from its SH3 domain mediates its binding to the alpha c subunit of AP2 adaptin, which is also concentrated in nerve terminals. These findings support a role of amphiphysin in synaptic vesicle endocytosis.
Resumo:
While previous studies have demonstrated that synaptotagmin plays an essential role in evoked neurotransmitter release, it has been difficult to determine whether it acts to facilitate or inhibit release. To address this question, we used acute genetic manipulations to alter the expression of synaptotagmin in Aplysia neurons. Transient overexpression of synaptotagmin in acutely dissected cholinergic neurons and in cultured glutaminergic neurons decreased the amplitude of the excitatory postsynaptic potential (EPSP) by 32% and 26%, respectively. In contrast, treatment of cultured presynaptic neurons with synaptotagmin antisense oligonucleotides increased the amplitude of the EPSP by 50-75%. These results are consistent with a role of synaptotagmin as an inhibitor of release.
Resumo:
Synaptotagmin (Syt) is an inositol high-polyphosphate series [IHPS inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, and inositol 1,2,3,4,5,6-hexakisphosphate] binding synaptic vesicle protein. A polyclonal antibody against the C2B domain (anti-Syt-C2B), an IHPS binding site, was produced. The specificity of this antibody to the C2B domain was determined by comparing its ability to inhibit IP4 binding to the C2B domain with that to inhibit the Ca2+/phospholipid binding to the C2A domain. Injection of the anti-Syt-C2B IgG into the squid giant presynapse did not block synaptic release. Coinjection of IP4 and anti-Syt-C2B IgG failed to block transmitter release, while IP4 itself was a powerful synpatic release blocker. Repetitive stimulation to presynaptic fiber injected with anti-Syt-C2B IgG demonstrated a rapid decline of the postsynaptic response amplitude probably due to its block of synaptic vesicle recycling. Electron microscopy of the anti-Syt-C2B-injected presynapse showed a 90% reduction of the numbers of synaptic vesicles. These results, taken together, indicate that the Syt molecule is central, in synaptic vesicle fusion by Ca2+ and its regulation by IHPS, as well as in the recycling of synaptic vesicles.