6 resultados para Sweet potatoes
em National Center for Biotechnology Information - NCBI
Resumo:
Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.
Resumo:
A hammerhead ribozyme [R(-)] targeting the minus strand RNA of potato spindle tuber viroid (PSTVd) and a mutated nonfunctional ribozyme [mR(-)] were designed, cloned, and transcribed. As predicted, both monomer and dimer transcripts of the active R(-) ribozyme gene could cleave the PSTVd minus strand dimer RNA into three fragments of 77, 338, and 359 bases in vitro at 25 and 50°C. The tandem dimer genes of R(-) and mR(-) were subcloned separately into the plant expression vector pROK2. Transgenic potato plants (cultivar Desirée) were generated by Agrobacterium tumefaciens-mediated transformation. Twenty-three of 34 independent transgenic plant lines expressing the active ribozyme R(-) resulted in having high levels of resistance to PSTVd, being free of PSTVd accumulation after challenge inoculation with PSTVd, but the remaining lines showed weaker levels of resistance to PSTVd with low levels of PSTVd accumulation. In contrast, 59 of 60 independent transgenic lines expressing the mutated ribozyme mR(-) were susceptible to PSTVd inoculation and had levels of PSTVd accumulation similar to that of the control plants transformed with the empty vector. The resistance against PSTVd replication was stably inherited to the vegetative progenies.
Resumo:
Leptin acts as a potent inhibitory factor against obesity by regulating energy expenditure, food intake, and adiposity. The obese diabetic db/db mouse, which has defects in leptin receptor, displays enhanced neural responses and elevated behavioral preference to sweet stimuli. Here, we show the effects of leptin on the peripheral taste system. An administration of leptin into lean mice suppressed responses of peripheral taste nerves (chorda tympani and glossopharyngeal) to sweet substances (sucrose and saccharin) without affecting responses to sour, salty, and bitter substances. Whole-cell patch-clamp recordings of activities of taste receptor cells isolated from circumvallate papillae (innervated by the glossopharyngeal nerve) demonstrated that leptin activated outward K+ currents, which resulted in hyperpolarization of taste cells. The db/db mouse with impaired leptin receptors showed no such leptin suppression. Taste tissue (circumvallate papilla) of lean mice expressed leptin-receptor mRNA and some of the taste cells exhibited immunoreactivities to antibodies of the leptin receptor. Taken together, these observations suggest that the taste organ is a peripheral target for leptin, and that leptin may be a sweet-sensing modulator (suppressor) that may take part in regulation of food intake. Defects in this leptin suppression system in db/db mice may lead to their enhanced peripheral neural responses and enhanced behavioral preferences for sweet substances.
Resumo:
Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.
Resumo:
Biochemical and genetic studies have implicated α-gustducin as a key component in the transduction of both bitter or sweet taste. Yet, α-gustducin-null mice are not completely unresponsive to bitter or sweet compounds. To gain insights into how gustducin mediates responses to bitter and sweet compounds, and to elicit the nature of the gustducin-independent pathways, we generated a dominant-negative form of α-gustducin and expressed it as a transgene from the α-gustducin promoter in both wild-type and α-gustducin-null mice. A single mutation, G352P, introduced into the C-terminal region of α-gustducin critical for receptor interaction rendered the mutant protein unresponsive to activation by taste receptor, but left its other functions intact. In control experiments, expression of wild-type α-gustducin as a transgene in α-gustducin-null mice fully restored responsiveness to bitter and sweet compounds, formally proving that the targeted deletion of the α-gustducin gene caused the taste deficits of the null mice. In contrast, transgenic expression of the G352P mutant did not restore responsiveness of the null mice to either bitter or sweet compounds. Furthermore, in the wild-type background, the mutant transgene inhibited endogenous α-gustducin's interactions with taste receptors, i.e., it acted as a dominant-negative. That the mutant transgene further diminished the residual bitter and sweet taste responsiveness of the α-gustducin-null mice suggests that other guanine nucleotide-binding regulatory proteins expressed in the α-gustducin lineage of taste cells mediate these responses.