36 resultados para Superoxide

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide and superoxide-derived oxidants have been hypothesized to be important mediators of postischemic injury. Whereas copper,zinc-superoxide dismutase, SOD1, efficiently dismutates superoxide, there has been controversy regarding whether increasing intracellular SOD1 expression would protect against or potentiate cellular injury. To determine whether increased SOD1 protects the heart from ischemia and reperfusion, studies were performed in a newly developed transgenic mouse model in which direct measurement of superoxide, contractile function, bioenergetics, and cell death could be performed. Transgenic mice with overexpression of human SOD1 were studied along with matched nontransgenic controls. Immunoblotting and immunohistology demonstrated that total SOD1 expression was increased 10-fold in hearts from transgenic mice compared with nontransgenic controls, with increased expression in both myocytes and endothelial cells. In nontransgenic hearts following 30 min of global ischemia a reperfusion-associated burst of superoxide generation was demonstrated by electron paramagnetic resonance spin trapping. However, in the transgenic hearts with overexpression of SOD1 the burst of superoxide generation was almost totally quenched, and this was accompanied by a 2-fold increase in the recovery of contractile function, a 2.2-fold decrease in infarct size, and a greatly improved recovery of high energy phosphates compared with that in nontransgenic controls. These results demonstrate that superoxide is an important mediator of postischemic injury and that increasing intracellular SOD1 dramatically protects the heart from this injury. Thus, increasing intracellular SOD1 expression may be a highly effective approach to decrease the cellular injury that occurs following reperfusion of ischemic tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) involves the progressive degeneration of motor neurons in the spinal cord and motor cortex. Mutations to Cu,Zn superoxide dismutase (SOD) linked with familial ALS are reported to increase hydroxyl radical adduct formation from hydrogen peroxide as measured by spin trapping with 5,5′-dimethyl-1-pyrrolline N-oxide (DMPO). In the present study, we have used oxygen-17-enriched water and H2O2 to reinvestigate the mechanism of DMPO/⋅OH formation from the SOD and SOD mutants. The relative ratios of DMPO/⋅17OH and DMPO/⋅16OH formed in the Fenton reaction were 90% and 10%, respectively, reflecting the ratios of H217O2 to H216O2. The reaction of the WT SOD with H217O2 in bicarbonate/CO2 buffer yielded 63% DMPO/⋅17OH and 37% DMPO/⋅16OH. Similar results were obtained from the reaction between familial ALS SOD mutants and H217O2: DMPO/⋅17OH (64%); DMPO/⋅16OH (36%) from A4V and DMPO/⋅17OH (62%); and DMPO/⋅16OH (38%) from G93A. These results were confirmed further by using 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide spin trap, a phosphorylated analog of DMPO. Contrary to earlier reports, the present results indicate that a significant fraction of DMPO/⋅OH formed during the reaction of SOD and familial ALS SOD mutants with H2O2 is derived from the incorporation of oxygen from water due to oxidation of DMPO to DMPO/⋅OH presumably via DMPO radical cation. No differences were detected between WT and mutant SODs, neither in the concentration of DMPO/⋅OH or DEPMPO/⋅OH formed nor in the relative incorporation of oxygen from H2O2 or water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper-zinc superoxide dismutase (Cu,ZnSOD) is the antioxidant enzyme that catalyzes the dismutation of superoxide (O2•−) to O2 and H2O2. In addition, Cu,ZnSOD also exhibits peroxidase activity in the presence of H2O2, leading to self-inactivation and formation of a potent enzyme-bound oxidant. We report in this study that lipid peroxidation of l-α-lecithin liposomes was enhanced greatly during the SOD/H2O2 reaction in the presence of nitrite anion (NO2−) with or without the metal ion chelator, diethylenetriaminepentacetic acid. The presence of NO2− also greatly enhanced α-tocopherol (α-TH) oxidation by SOD/H2O2 in saturated 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine liposomes. The major product identified by HPLC and UV-studies was α-tocopheryl quinone. When 1,2-diauroyl-sn-glycero-3-phosphatidylcholine liposomes containing γ-tocopherol (γ-TH) were incubated with SOD/H2O2/NO2−, the major product identified was 5-NO2-γ-TH. Nitrone spin traps significantly inhibited the formation of α-tocopheryl quinone and 5-NO2-γ-TH. NO2− inhibited H2O2-dependent inactivation of SOD. A proposed mechanism of this protection involves the oxidation of NO2− by an SOD-bound oxidant to the nitrogen dioxide radical (•NO2). In this study, we have shown a new mechanism of nitration catalyzed by the peroxidase activity of SOD. We conclude that NO2− is a suitable probe for investigating the peroxidase activity of familial Amyotrophic Lateral Sclerosis-linked SOD mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515–518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic Cu,Zn superoxide dismutases (CuZnSODs) are antioxidant enzymes remarkable for their unusually stable β-barrel fold and dimer assembly, diffusion-limited catalysis, and electrostatic guidance of their free radical substrate. Point mutations of CuZnSOD cause the fatal human neurodegenerative disease amyotrophic lateral sclerosis. We determined and analyzed the first crystallographic structure (to our knowledge) for CuZnSOD from a prokaryote, Photobacterium leiognathi, a luminescent symbiont of Leiognathid fish. This structure, exemplifying prokaryotic CuZnSODs, shares the active-site ligand geometry and the topology of the Greek key β-barrel common to the eukaryotic CuZnSODs. However, the β-barrel elements recruited to form the dimer interface, the strategy used to forge the channel for electrostatic recognition of superoxide radical, and the connectivity of the intrasubunit disulfide bond in P. leiognathi CuZnSOD are discrete and strikingly dissimilar from those highly conserved in eukaryotic CuZnSODs. This new CuZnSOD structure broadens our understanding of structural features necessary and sufficient for CuZnSOD activity, highlights a hitherto unrecognized adaptability of the Greek key β-barrel building block in evolution, and reveals that prokaryotic and eukaryotic enzymes diverged from one primordial CuZnSOD and then converged to distinct dimeric enzymes with electrostatic substrate guidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide-mediated clastogenesis is characteristic for various chronic inflammatory diseases with autoimmune reactions and probably plays a role in radiation-induced clastogenesis and in the congenital breakage syndromes. It is consistently prevented by exogenous superoxide dismutase (SOD), but not by heat-inactivated SOD, indicating that the anticlastogenic effect is related to the catalytic function of the enzyme. Increased superoxide production by activated monocytes/macrophages is followed by release of more long-lived metabolites, so-called clastogenic factors, which contain lipid peroxidation products, unusual nucleotides of inosine, and cytokines such as tumor necrosis factor α. Since these components are not only clastogenic, but can stimulate further superoxide production by monocytes and neutrophils, the genotoxic effects are self-sustaining. It is shown here that anticlastogenic effects of exogenous SOD are preserved despite extensive washing of the cells and removal of all extracellular SOD. Using flow cytometry and confocal laser microscopy, rapid adherence of the fluorescently labeled enzyme to the cell surface could be observed with slow uptake into the cell during the following hours. The degree of labeling was concentration and time dependent. It was most important for monocytes, compared with lymphocytes, neutrophils, and fibroblasts. The cytochrome c assay showed significantly diminished O2− production by monocytes, pretreated with SOD and washed thereafter. The preferential and rapid binding of SOD to monocytes may be of importance not only for the superoxide-mediated genotoxic effects, described above, but also from a therapeutic standpoint. It can explain the observation that beneficial effects of injected SOD lasted for weeks and months despite rapid clearance of the enzyme from the blood stream according to pharmacodynamic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxynitrite activates the cyclooxygenase activities of constitutive and inducible prostaglandin endoperoxide synthases by serving as a substrate for the enzymes’ peroxidase activities. Activation of purified enzyme is induced by direct addition of peroxynitrite or by in situ generation of peroxynitrite from NO coupling to superoxide anion. Cu,Zn-superoxide dismutase completely inhibits cyclooxygenase activation in systems where peroxynitrite is generated in situ from superoxide. In the murine macrophage cell line RAW264.7, the lipophilic superoxide dismutase-mimetic agents, Cu(II) (3,5-diisopropylsalicylic acid)2, and Mn(III) tetrakis(1-methyl-4-pyridyl)porphyrin dose-dependently decrease the synthesis of prostaglandins without affecting the levels of NO synthase or prostaglandin endoperoxide synthase or by inhibiting the release of arachidonic acid. These findings support the hypothesis that peroxynitrite is an important modulator of cyclooxygenase activity in inflammatory cells and establish that superoxide anion serves as a biochemical link between NO and prostaglandin biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptically released Zn2+ can enter and cause injury to postsynaptic neurons. Microfluorimetric studies using the Zn2+-sensitive probe, Newport green, examined levels of [Zn2+]i attained in cultured cortical neurons on exposure to N-methyl-d-asparte, kainate, or high K+ (to activate voltage-sensitive Ca2+ channels) in the presence of 300 μM Zn2+. Indicating particularly high permeability through Ca2+-permeable α-amino3-hydroxy-5-methyl-4-isoxazolepropionic-acid/kainate (Ca-A/K) channels, micromolar [Zn2+]i rises were observed only after kainate exposures and only in neurons expressing these channels [Ca-A/K(+) neurons]. Further studies using the oxidation-sensitive dye, hydroethidine, revealed Zn2+-dependent reactive oxygen species (ROS) generation that paralleled the [Zn2+]i rises, with rapid oxidation observed only in the case of Zn2+ entry through Ca-A/K channels. Indicating a mitochondrial source of this ROS generation, hydroethidine oxidation was inhibited by the mitochondrial electron transport blocker, rotenone. Additional evidence for a direct interaction between Zn2+ and mitochondria was provided by the observation that the Zn2+ entry through Ca-A/K channels triggered rapid mitochondrial depolarization, as assessed by using the potential-sensitive dye tetramethylrhodamine ethylester. Whereas Ca2+ influx through Ca-A/K channels also triggers ROS production, the [Zn2+]i rises and subsequent ROS production are of more prolonged duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in Cu, Zn superoxide dismutase (SOD1) cause the neurodegenerative disease familial amyotrophic lateral sclerosis from an as-yet-unidentified toxic property(ies). Analysis in Saccharomyces cerevisiae of a broad range of human familial amyotrophic lateral sclerosis–linked SOD1 mutants (A4V, G37R, G41D, H46R, H48Q, G85R, G93C, and I113T) reveals one property common to these mutants (including two at residues that coordinate the catalytic copper): Each does indeed bind copper and scavenge oxygen-free radicals in vivo. Neither decreased copper binding nor decreased superoxide scavenging activity is a property shared by all mutants. The demonstration that shows that all mutants tested do bind copper under physiologic conditions supports a mechanism of SOD1 mutant-mediated disease arising from aberrant copper-mediated chemistry catalyzed by less tightly folded (and hence less constrained) mutant enzymes. The mutant enzymes also are shown to acquire the catalytic copper in vivo through the action of CCS, a specific copper chaperone for SOD1, which in turn suggests that a search for inhibitors of this SOD1 copper chaperone may represent a therapeutic avenue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which mutations in the superoxide dismutase (SOD1) gene cause motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS) is unknown. Recent reports that neuronal death in SOD1-familial ALS is apoptotic have not documented activation of cell death genes. We present evidence that the enzyme caspase-1 is activated in neurons expressing mutant SOD1 protein. Proteolytic processing characteristic of caspase-1 activation is seen both in spinal cords of transgenic ALS mice and neurally differentiated neuroblastoma (line N2a) cells with SOD1 mutations. This activation of caspase-1 is enhanced by oxidative challenge (xanthine/xanthine oxidase), which triggers cleavage and secretion of the interleukin 1β converting enzyme substrate, pro-interleukin 1β, and induces apoptosis. This N2a culture system should be an instructive in vitro model for further investigation of the proapoptotic properties of mutant SOD1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide dismutase (SOD) catalyzes the conversion of superoxide radical to hydrogen peroxide. Periplasmic localization of bacterial Cu,Zn-SOD has suggested a role of this enzyme in defense against extracellular phagocyte-derived reactive oxygen species. Sequence analysis of regions flanking the Salmonella typhimurium sodC gene encoding Cu,Zn-SOD demonstrates significant homology to λ phage proteins, reflecting possible bacteriophage-mediated horizontal gene transfer of this determinant among pathogenic bacteria. Salmonella deficient in Cu,Zn-SOD has reduced survival in macrophages and attenuated virulence in mice, which can be restored by abrogation of either the phagocyte respiratory burst or inducible nitric oxide synthase. Moreover, a sodC mutant is extremely susceptible to the combination of superoxide and nitric oxide. These observations suggest that SOD protects periplasmic or inner membrane targets by diverting superoxide and limiting peroxynitrite formation, and they demonstrate the ability of the respiratory burst and nitric oxide synthase to synergistically kill microbial pathogens in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that enhanced tolerance of oxidative stress would improve winter survival, two clones of alfalfa (Medicago sativa) were transformed with a Mn-superoxide dismutase (Mn-SOD) targeted to the mitochondria or to the chloroplast. Although Mn-SOD activity increased in most primary transgenic plants, both cytosolic and chloroplastic forms of Cu/Zn-SOD had lower activity in the chloroplast SOD transgenic plants than in the nontransgenic plants. In a field trial at Elora, Ontario, Canada, the survival and yield of 33 primary transgenic and control plants were compared. After one winter most transgenic plants had higher survival rates than control plants, with some at 100%. Similarly, some independent transgenic plants had twice the herbage yield of the control plants. Prescreening the transgenic plants for SOD activity, vigor, or freezing tolerance in the greenhouse was not effective in identifying individual transgenic plants with improved field performance. Freezing injury to leaf blades and fibrous roots, measured by electrolyte leakage from greenhouse-grown acclimated plants, indicated that the most tolerant were only 1°C more freezing-tolerant than alfalfa clone N4. There were no differences among transgenic and control plants for tetrazolium staining of field-grown plants at any freezing temperature. Therefore, although many of the transgenic plants had higher winter survival rates and herbage yield, there was no apparent difference in primary freezing injury, and therefore, the trait is not associated with a change in the primary site of freezing injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to identify the enzymatic mechanism responsible for the synthesis of reactive oxygen species produced during the hypersensitive response, preparations of rose (Rosa damascena) cell plasma membranes, partially solubilized plasma membrane protein, and cytosol were assayed for the NADH- and NADPH-dependent synthesis of superoxide using assays for the reduction of cytochrome c (Cyt c), assays for the reduction of nitroblue tetrazolium, and assays for the chemiluminescence of N,N′-dimethyl-9,9′-biacridium dinitrate (lucigenin). Each assay ascribed the highest activity to a different preparation: the Cyt c assay to cytosol, the nitroblue tetrazolium assay to plasma membrane, and the lucigenin assay to the partially solubilized plasma membrane protein (with NADH). This suggests that no two assays measure the same set of enzymes and that none of the assays is suitable for comparisons of superoxide synthesis among different cell fractions. With the plasma membrane preparation, the presence of large amounts of superoxide-dismutase-insensitive Cyt c reductase confounded attempts to use Cyt c to measure superoxide synthesis. With the partially solubilized membrane protein, direct reduction of lucigenin probably contributed to the chemiluminescence. Superoxide synthesis detected with lucigenin should be confirmed by superoxide-dismutase-sensitive Cyt c reduction.