12 resultados para Superconducting transition temperature

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A filamentary model of “metallic” conduction in layered high temperature superconductive cuprates explains the concurrence of normal state resistivities (Hall mobilities) linear in T (T−2) with optimized superconductivity. The model predicts the lowest temperature T0 for which linearity holds and it also predicts the maximum superconductive transition temperature Tc. The theory abandons the effective medium approximation that includes Fermi liquid as well as all other nonpercolative models in favor of countable smart basis states.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I conjecture that the mechanism of superconductivity in the cuprates is a saving, due to the improved screening resulting from Cooper pair formation, of the part of the Coulomb energy associated with long wavelengths and midinfrared frequencies. This scenario is shown to provide a plausible explanation of the trend of transition temperature with layering structure in the Ca-spaced compounds and to predict a spectacularly large decrease in the electron-energy-loss spectroscopy cross-section in the midinfrared region on transition to the superconducting state, as well as less spectacular but still surprisingly large changes in the optical behavior. Existing experimental results appear to be consistent with this picture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Molecular dynamics simulations of the oligonucleotide duplex d(CGCGCG)2 in aqueous solution are used to investigate the glass transition phenomenon. The simulations were performed at temperatures in the 20 K to 340 K range. The mean square atomic fluctuations showed that the behavior of the oligonucleotide duplex was harmonic at low temperatures. A glass transition temperature at 223 K to 234 K was inferred for the oligonucleotide duplex, which is in agreement with experimental observations. The largest number of hydrogen bounds between the polar atoms of the oligonucleotide duplex and the water molecules was obtained at the glass transition temperature. With increasing temperature we observed a decrease in the average lifetime of the hydrogen bonds to water molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper I review the ways in which the glassy state is obtained both in nature and in materials science and highlight a "new twist"--the recent recognition of polymorphism within the glassy state. The formation of glass by continuous cooling (viscous slowdown) is then examined, the strong/fragile liquids classification is reviewed, and a new twist-the possibility that the slowdown is a result of an avoided critical point-is noted. The three canonical characteristics of relaxing liquids are correlated through the fragility. As a further new twist, the conversion of strong liquids to fragile liquids by pressure-induced coordination number increases is demonstrated. It is then shown that, for comparable systems, it is possible to have the same conversion accomplished via a first-order transition within the liquid state during quenching. This occurs in the systems in which "polyamorphism" (polymorphism in the glassy state) is observed, and the whole phenomenology is accounted for by Poole's bond-modified van der Waals model. The sudden loss of some liquid degrees of freedom through such weak first-order transitions is then related to the polyamorphic transition between native and denatured hydrated proteins, since the latter are also glass-forming systems--water-plasticized, hydrogen bond-cross-linked chain polymers (and single molecule glass formers). The circle is closed with a final new twist by noting that a short time scale phenomenon much studied by protein physicists-namely, the onset of a sharp change in d/dT ( is the Debye-Waller factor)--is general for glass-forming liquids, including computer-simulated strong and fragile ionic liquids, and is closely correlated with the experimental glass transition temperature. The latter thus originates in strong anharmonicity in certain components of the vibrational density of states, which permits the system to access the multiple minima of its configuration space. The connection between the anharmonicity in these modes, vibrational localization, the Kauzmann temperature, and the fragility of the liquid is proposed as the key problem in glass science.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Topological frustration in an energetically unfrustrated off-lattice model of the helical protein fragment B of protein A from Staphylococcus aureus was investigated. This Gō-type model exhibited thermodynamic and kinetic signatures of a well-designed two-state folder with concurrent collapse and folding transitions and single exponential kinetics at the transition temperature. Topological frustration is determined in the absence of energetic frustration by the distribution of Fersht φ values. Topologically unfrustrated systems present a unimodal distribution sharply peaked at intermediate φ, whereas highly frustrated systems display a bimodal distribution peaked at low and high φ values. The distribution of φ values in protein A was determined both thermodynamically and kinetically. Both methods yielded a unimodal distribution centered at φ = 0.3 with tails extending to low and high φ values, indicating the presence of a small amount of topological frustration. The contacts with high φ values were located in the turn regions between helices I and II and II and III, intimating that these hairpins are in large part required in the transition state. Our results are in good agreement with all-atom simulations of protein A, as well as lattice simulations of a three- letter code 27-mer (which can be compared with a 60-residue helical protein). The relatively broad unimodal distribution of φ values obtained from the all-atom simulations and that from the minimalist model for the same native fold suggest that the structure of the transition state ensemble is determined mostly by the protein topology and not energetic frustration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Constitutive expression of the cold-regulated COR15a gene of Arabidopsis thaliana results in a significant increase in the survival of isolated protoplasts frozen over the range of −4.5 to −7°C. The increased freezing tolerance is the result of a decreased incidence of freeze-induced lamellar-to-hexagonal II phase transitions that occur in regions where the plasma membrane is brought into close apposition with the chloroplast envelope as a result of freeze-induced dehydration. Moreover, the mature polypeptide encoded by this gene, COR15am, increases the lamellar-to-hexagonal II phase transition temperature of dioleoylphosphatidylethanolamine and promotes formation of the lamellar phase in a lipid mixture composed of the major lipid species that comprise the chloroplast envelope. We propose that COR15am, which is located in the chloroplast stroma, defers freeze-induced formation of the hexagonal II phase to lower temperatures (lower hydrations) by altering the intrinsic curvature of the inner membrane of the chloroplast envelope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lipophosphoglycan (LPG), the predominant molecule on the surface of the parasite Leishmania donovani, has previously been shown to be a potent inhibitor of protein kinase C (PKC) isolated from rat brain. The mechanism by which LPG inhibits PKC was further investigated in this study. LPG was found to inhibit the PKC alpha-catalyzed phosphorylation of histone in assays using large unilamellar vesicles composed of 1-palmitoyl, 2-oleoyl phosphatidylserine and 1-palmitoyl, 2-oleoyl phosphatidylcholine either with or without 1% 1,2 diolein added. The results also indicated that while PKC binding to sucrose-loaded vesicles was not substantially reduced in the presence of LPG at concentrations of 1-2%, the activity of membrane-bound PKC was inhibited by 70%. This inhibition of the membrane-bound form of PKC is not a consequence of reduced substrate availability to the membrane. However, Km shifted from approximately 31 +/- 4 microM to 105 +/- 26 microM in the presence of 5% LPG. LPG caused PKC to bind to membranes without inducing a conformational change as revealed by the lack of an increased susceptibility to trypsin. An LPG fragment containing only one repeating disaccharide unit was not as effective as the entire LPG molecule or of larger fragments in inhibiting the membrane-bound form of the enzyme. The shorter fragments were also less potent in raising the bilayer to hexagonal phase transition temperature of a model membrane. LPG is also able to inhibit the membrane-bound form of PKC alpha from the inner monolayer of large unilamellar vesicles, the opposite monolayer to which the enzyme binds in our assay. Inhibition is likely a result of alterations in the physical properties of the membrane. To our knowledge, this is the first example of a membrane additive that can inhibit the membrane-bound form of PKC in the presence of other lipid cofactors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antifreeze glycoproteins (AFGPs), found in the blood of polar fish at concentrations as high as 35 g/liter, are known to prevent ice crystal growth and depress the freezing temperature of the blood. Previously, Rubinsky et al. [Rubinsky, B., Mattioli, M., Arav, A., Barboni, B. & Fletcher, G. L. (1992) Am. J. Physiol. 262, R542-R545] provided evidence that AFGPs block ion fluxes across membranes during cooling, an effect that they ascribed to interactions with ion channels. We investigated the effects of AFGPs on the leakage of a trapped marker from liposomes during chilling. As these liposomes are cooled through the transition temperature, they leak approximately 50% of their contents. Addition of less than 1 mg/ml of AFGP prevents up to 100% of this leakage, both during chilling and warming through the phase transition. This is a general effect that we show here applies to liposomes composed of phospholipids with transition temperatures ranging from 12 degrees C to 41 degrees C. Because these results were obtained with liposomes composed of phospholipids alone, we conclude that the stabilizing effects of AFGPs on intact cells during chilling reported by Rubinsky et al. may be due to a nonspecific effect on the lipid components of native membranes. There are other proteins that prevent leakage, but only under specialized conditions. For instance, antifreeze proteins, bovine serum albumin, and ovomucoid all either have no effect or actually induce leakage. Following precipitation with acetone, all three proteins inhibited leakage, although not to the extent seen with AFGPs. Alternatively, there are proteins such as ovotransferrin that have no effect on leakage, either before or after acetone precipitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional regulation of proteins is central to living organisms. Here it is shown that a nonfunctional conformational state of a polypeptide can be kinetically trapped in a lipid bilayer environment. This state is a metastable structure that is stable for weeks just above the phase transition temperature of the lipid. When the samples are incubated for several days at 68 degrees C, 50% of the trapped conformation converts to the minimum-energy functional state. This result suggests the possibility that another mechanism for functional regulation of protein activity may be available for membrane proteins: that cells may insert proteins into membranes in inactive states pending the biological demand for protein function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that the phospholipids of the brain cells of fish are altered during cold adaptation. In particular, the 1-monounsaturated 2-polyunsaturated phosphatidylethanolamines (PEs) increase 2- to 3-fold upon adaptation to cold. One of the most striking changes is in the 18:1/22:6 species of PE. We determined how this lipid affected the bilayer-to-hexagonal-phase transition temperature of 16:1/16:1 PE. We found that it was more effective in lowering this transition temperature than were other, less unsaturated, PE species. In addition, it was not simply the presence of the 18:1/22:6 acyl chains which caused this effect, since the 18:1/22:6 species of phosphatidylcholine had the opposite effect on this transition temperature. Zwitterionic substances that lower the bilayer-to-hexagonal-phase transition temperature often cause an increase in the activity of protein kinase C (PKC). Indeed, the 18:1/22:6 PE caused an increase in the rate of histone phosphorylation by PKC which was greater than that caused by other, less unsaturated, PEs. The 18:1/22:6 phosphatidylcholine had no effect on this enzyme. The stimulation of the activity of PKC by the 18:1/22:6 PE is a consequence of this lipid's increasing the partitioning of PKC to the membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple model of the kinetics of protein folding is presented. The reaction coordinate is the "correctness" of a configuration compared with the native state. The model has a gap in the energy spectrum, a large configurational entropy, a free energy barrier between folded and partially folded states, and a good thermodynamic folding transition. Folding kinetics is described by a master equation. The folding time is estimated by means of a local thermodynamic equilibrium assumption and then is calculated both numerically and analytically by solving the master equation. The folding time has a maximum near the folding transition temperature and can have a minimum at a lower temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of thermally induced changes in the lipid core structure on the oxidative resistance of discrete, homogeneous low density lipoprotein (LDL) subspecies (d, 1.0297-1.0327 and 1.0327-1.0358 g/ml) has been evaluated. The thermotropic transition of the LDL lipid core at temperatures between 15 degrees C and 37 degrees C, determined by differential scanning calorimetry, exerted significant effects on the kinetics of copper-mediated LDL oxidation expressed in terms of intrinsic antioxidant efficiency (lag time) and diene production rate. Thus, the temperature coefficients of oxidative resistance and maximum oxidation rate showed break points at the core transition temperature. Temperature-induced changes in copper binding were excluded as the molecular basis of such effects, as the saturation of LDL with copper was identical below and above the core transition. At temperatures below the transition, the elevation in lag time indicated a greater resistance to oxidation, reflecting a higher degree of antioxidant protection. This effect can be explained by higher motional constraints and local antioxidant concentrations, the latter resulting from the freezing out of antioxidants from crystalline domains of cholesteryl esters and triglycerides. Below the transition temperature, the conjugated diene production rate was decreased, a finding that correlated positively with the average size of the cooperative units of neutral lipids estimated from the calorimetric transition width. The reduced accessibility and structural hindrance in the cluster organization of the core lipids therefore inhibits peroxidation. Our findings provide evidence for a distinct effect of the dynamic state of the core lipids on the oxidative susceptibility of LDL and are therefore relevant to the atherogenicity of these cholesterol-rich particles.