14 resultados para Sunflower seeds
em National Center for Biotechnology Information - NCBI
Resumo:
The existence in higher plants of an additional β-oxidation system in mitochondria, besides the well-characterized peroxisomal system, is often considered controversial. Unequivocal demonstration of β-oxidation activity in mitochondria should rely on identification of the enzymes specific to mitochondrial β-oxidation. Acyl-coenzyme A dehydrogenase (ACAD) (EC 1.3.99.2,3) activity was detected in purified mitochondria from maize (Zea mays L.) root tips and from embryonic axes of early-germinating sunflower (Helianthus annuus L.) seeds, using as the enzyme assay the reduction of 2,6-dichlorophenolindophenol, with phenazine methosulfate as the intermediate electron carrier. Subcellular fractionation showed that this ACAD activity was associated with mitochondrial fractions. Comparison of ACAD activity in mitochondria and acyl-coenzyme A oxidase activity in peroxisomes showed differences of substrate specificities. Embryonic axes of sunflower seeds were used as starting material for the purification of ACADs. Two distinct ACADs, with medium-chain and long-chain substrate specificities, respectively, were separated by their chromatographic behavior, which was similar to that of mammalian ACADs. The characterization of these ACADs is discussed in relation to the identification of expressed sequenced tags corresponding to ACADs in cDNA sequence analysis projects and with the potential roles of mitochondrial β-oxidation in higher plants.
Resumo:
With the aim of improving the nutritive value of an important grain legume crop, a chimeric gene specifying seed-specific expression of a sulfur-rich, sunflower seed albumin was stably transformed into narrow-leafed lupin (Lupinus angustifolius L.). Sunflower seed albumin accounted for 5% of extractable seed protein in a line containing a single tandem insertion of the transferred DNA. The transgenic seeds contained less sulfate and more total amino acid sulfur than the nontransgenic parent line. This was associated with a 94% increase in methionine content and a 12% reduction in cysteine content. There was no statistically significant change in other amino acids or in total nitrogen or total sulfur contents of the seeds. In feeding trials with rats, the transgenic seeds gave statistically significant increases in live weight gain, true protein digestibility, biological value, and net protein utilization, compared with wild-type seeds. These findings demonstrate the feasibility of using genetic engineering to improve the nutritive value of grain crops.
Resumo:
The sunflower alliance of families comprises nearly 10% of all flowering plant species and includes the largest of all plant families, the sunflower family Asteraceae, which has 23,000 species, and the bellflower family Campanulaceae. Both are worldwide in distribution, but the majority of their species occur in the northern hemisphere. Recently it has been shown that a number of small, woody families from the Australian–Southwest Pacific area also belong in this relationship. Here we add yet another such family and present phylogenetic, biogeographic, and chronological analyses elucidating the origin of this large group of plants. We show that the ancestral lineages are confined to Malesia, Australia, New Guinea, and New Zealand and that the sunflower and bellflower families represent phylogenetically derived lineages within a larger group with a Cretaceous and southern-hemisphere, presumably East Gondwana, ancestry. Their highly derived position in the flowering plant phylogeny makes this significant for understanding the evolution of flowering plants in general.
Resumo:
The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to β-glucuronidase (GUS) to study their activity pattern. The FIS2∷GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2∷GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA∷GUS has a pattern of activity similar to that of FIS2∷GUS, but FIE∷GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2∷GUS, MEA∷GUS, and FIE∷GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.
Resumo:
Targeted gene replacement in plastids was used to explore whether the rbcL gene that codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, the key enzyme of photosynthetic CO2 fixation, might be replaced with altered forms of the gene. Tobacco (Nicotiana tabacum) plants were transformed with plastid DNA that contained the rbcL gene from either sunflower (Helianthus annuus) or the cyanobacterium Synechococcus PCC6301, along with a selectable marker. Three stable lines of transformants were regenerated that had altered rbcL genes. Those containing the rbcL gene for cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase produced mRNA but no large subunit protein or enzyme activity. Those tobacco plants expressing the sunflower large subunit synthesized a catalytically active hybrid form of the enzyme composed of sunflower large subunits and tobacco small subunits. A third line expressed a chimeric sunflower/tobacco large subunit arising from homologous recombination within the rbcL gene that had properties similar to the hybrid enzyme. This study demonstrated the feasibility of using a binary system in which different forms of the rbcL gene are constructed in a bacterial host and then introduced into a vector for homologous recombination in transformed chloroplasts to produce an active, chimeric enzyme in vivo.
Resumo:
Although the occurrence of intracellular glasses in seeds and pollen has been established, physical properties such as rotational correlation times and viscosity have not been studied extensively. Using electron paramagnetic resonance spectroscopy, we examined changes in the molecular mobility of the hydrophilic nitroxide spin probe 3-carboxy-proxyl during melting of intracellular glasses in axes of pea (Pisum sativum L.) seeds and cattail (Typha latifolia L.) pollen. The rotational correlation time of the spin probe in intracellular glasses of both organisms was approximately 10−3 s. Using the distance between the outer extrema of the electron paramagnetic resonance spectrum (2Azz) as a measure of molecular mobility, we found a sharp increase in mobility at a definite temperature during heating. This temperature increased with decreasing water content of the samples. Differential scanning calorimetry data on these samples indicated that this sharp increase corresponded to melting of the glassy matrix. Molecular mobility was found to be inversely correlated with storage stability. With decreasing water content, the molecular mobility reached a minimum, and increased again at very low water content. Minimum mobility and maximum storage stability occurred at a similar water content. This correlation suggests that storage stability might be at least partially controlled by molecular mobility. At low temperatures, when storage longevity cannot be determined on a realistic time scale, 2Azz measurements can provide an estimate of the optimum storage conditions.
Resumo:
Trans-isomers of cytokinins (CK) are thought to predominate and have greater biological activity than corresponding cis-isomers in higher plants. However, this study demonstrates a system within which the predominant CK are cis-isomers. CK were measured at four developmental stages in developing chickpea (Cicer arietinum L. cultivar Kaniva) seeds by gas chromatography-mass spectrometry. Concentrations were highest at an early endospermic fluid stage and fell considerably when the cotyledons expanded. The cis-isomers of zeatin nucleotide ([9R-MP]Z), zeatin riboside ([9R]Z), and zeatin (Z) were present in greater concentrations than those of corresponding trans-isomers: (trans)[9R-MP]Z, (trans)[9R]Z, (trans)Z, or dihydrozeatin riboside. Dihydrozeatin, dihydrozeatin nucleotide, and the isopentenyl-type CK concentrations were either low or not detectable. Root xylem exudates also contained predominantly cis-isomers of [9R-MP]Z and [9R]Z. Identities of (cis)[9R]Z and (cis)Z were confirmed by comparison of ion ratios and retention indices, and a full spectrum was obtained for (cis)[9R]Z. Tissues were extracted under conditions that minimized the possibility of RNase hydrolysis of tRNA following tissue disruption, being a significant source of the cis-CK. Since no isomerization of (trans)[2H]CK internal standards occurred, it is unlikely that the cis-CK resulted from enzymic or nonenzymic isomerization during extraction. Although quantities of total CK varied, similar CK profiles were found among three different chickpea cultivars and between adequately watered and water-stressed plants. Developing chickpea seeds will be a useful system for investigating the activity of cis-CK or determining the origin and metabolism of free CK.
Resumo:
Stachyose synthase (STS) (EC 2.4.1.67) was purified to homogeneity from mature seeds of adzuki bean (Vigna angularis). Electrophoresis under denaturing conditions revealed a single polypeptide of 90 kD. Size-exclusion chromatography of the purified enzyme yielded two activity peaks with apparent molecular masses of 110 and 283 kD. By isoelectric focusing and chromatofocusing the protein was separated into several active forms with isoelectric point values between pH 4.7 and 5.0. Purified STS catalyzed the transfer of the galactosyl group from galactinol to raffinose and myo-inositol. Additionally, the enzyme catalyzed the galactinol-dependent synthesis of galactosylononitol from d-ononitol. The synthesis of a galactosylcyclitol by STS is a new oberservation. Mutual competitive inhibition was observed when the enzyme was incubated with both substrates (raffinose and ononitol) simultaneously. Galactosylononitol could also substitute for galactinol in the synthesis of stachyose from raffinose. Although galactosylononitol was the less-efficient donor, the Michaelis constant value for raffinose was lower in the presence of galactosylononitol (13.2 mm) compared with that obtained in the presence of galactinol (38.6 mm). Our results indicate that STS catalyzes the biosynthesis of galactosylononitol, but may also mediate a redistribution of galactosyl residues from galactosylononitol to stachyose.
Resumo:
Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.
Resumo:
We investigated the relationship between nonphotochemical plastoquinone reduction and chlororespiration in leaves of growth-chamber-grown sunflower (Helianthus annuus L.). Following a short induction period, leaves of previously illuminated sunflower showed a substantially increased level of minimal fluorescence following a light-to-dark transition. This increase in minimal fluorescence was reversed by far-red illumination, inhibited by rotenone or photooxidative methyl viologen treatment, and stimulated by fumigation with CO. Using flash-induced electrochromic absorption-change measurements, we observed that the capacity of sunflower to reduce plastoquinone in the dark influenced the activation state of the chloroplast ATP synthase, although chlororespiratory transmembrane electrochemical potential formation alone does not fully explain our observations. We have added several important new observations to the work of others, forming, to our knowledge, the first strong experimental evidence that chlororespiratory, nonphotochemical plastoquinone reduction and plastoquinol oxidation occur in the chloroplasts of higher plants. We have introduced procedures for monitoring and manipulating chlorores-piratory activity in leaves that will be important in subsequent work aimed at defining the pathway and function of this dark electron flux in higher plant chloroplasts.
Resumo:
Treatment of the xyloglucan isolated from the seeds of Hymenaea courbaril with Humicola insolens endo-1,4-β-d-glucanase I produced xyloglucan oligosaccharides, which were then isolated and characterized. The two most abundant compounds were the heptasaccharide (XXXG) and the octasaccharide (XXLG), which were examined by reference to the biological activity of other structurally related xyloglucan compounds. The reduced oligomer (XXLGol) was shown to promote growth of wheat (Triticum aestivum) coleoptiles independently of the presence of 2,4-dichlorophenoxyacetic acid (2,4-D). In the presence of 2,4-D, XXLGol at nanomolar concentrations increased the auxin-induced response. It was found that XXLGol is a signaling molecule, since it has the ability to induce, at nanomolar concentrations, a rapid increase in an α-l-fucosidase response in suspended cells or protoplasts of Rubus fruticosus L. and to modulate 2,4-D or gibberellic acid-induced α-l-fucosidase.
Resumo:
We have investigated the spatial distributions of expansion and cell cycle in sunflower (Helianthus annuus L.) leaves located at two positions on the stem, from leaf initiation to the end of expansion. Relative expansion rate (RER) was analyzed by following the deformation of a grid drawn on the lamina; relative division rate (RDR) and flow-cytometry data were obtained in four zones perpendicular to the midrib. Calculations for determining in situ durations of the cell cycle and of S-G2-M in the epidermis are proposed. Area and cell number of a given leaf zone increased exponentially during the first two-thirds of the development duration. RER and RDR were constant and similar in all zones of a leaf and in all studied leaves during this period. Reduction in RER occurred afterward with a tip-to-base gradient and lagged behind that of RDR by 4 to 5 d in all zones. After a long period of constancy, cell-cycle duration increased rapidly and simultaneously within a leaf zone, with cells blocked in the G0-G1 phase of the cycle. Cells that began their cycle after the end of the period with exponential increase in cell number could not finish it, suggesting that they abruptly lost their competence to cross a critical step of the cycle. Differences in area and in cell number among zones of a leaf and among leaves of a plant essentially depended on the timing of two events, cessation of exponential expansion and of exponential division.
Resumo:
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.
Resumo:
An extensive sequence comparison of the chloroplast ndhF gene from all major clades of the largest flowering plant family (Asteraceae) shows that this gene provides approximately 3 times more phylogenetic information than rbcL. This is because it is substantially longer and evolves twice as fast. The 5' region (1380 bp) of ndhF is very different from the 3' region (855 bp) and is similar to rbcL in both the rate and the pattern of sequence change. The 3' region is more A+T-rich, has higher levels of nonsynonymous base substitution, and shows greater transversion bias at all codon positions. These differences probably reflect different functional constraints on the 5' and 3' regions of ndhF. The two patterns of base substitutions of ndhF are particularly advantageous for phylogenetic reconstruction because the conserved and variable segments can be used for older and recent groups, respectively. Phylogenetic analyses of 94 ndhF sequences provided much better resolution of relationships than previous molecular and morphological phylogenies of the Asteraceae. The ndhF tree identified five major clades: (i) the Calyceraceae is the sister family of Asteraceae; (ii) the Barnadesioideae is monophyletic and is the sister group to the rest of the family; (iii) the Cichorioideae and its two basal tribes Mutisieae and Cardueae are paraphyletic; (iv) four tribes of Cichorioideae (Lactuceae, Arctoteae, Liabeae, and Vernonieae) form a monophyletic group, and these are the sister clade of the Asteroideae; and (v) the Asteroideae is monophyletic and includes three major clades.