3 resultados para Sulfuric-acid-solutions

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of acid secretion in regulating short-term changes in growth rate and wall extensibility was investigated in emerging first leaves of intact, water-stressed maize (Zea mays L.) seedlings. A novel approach was used to measure leaf responses to injection of water or solutions containing potential regulators of growth. Both leaf elongation and wall extensibility, as measured with a whole-plant creep extensiometer, increased dramatically within minutes of injecting water, 0.5 mm phosphate, or strong (50 mm) buffer solutions with pH ≤ 5.0 into the cell-elongation zone of water-stressed leaves. In contrast, injecting buffer solutions at pH ≥ 5.5 inhibited these fast responses. Solutions containing 0.5 mm orthovanadate or erythrosin B to inhibit wall acidification by plasma membrane H+-ATPases were also inhibitory. Thus, cell wall extensibility and leaf growth in water-stressed plants remained inhibited, despite the increased availability of (injected) water when accompanying increases in acid-induced wall loosening were prevented. However, growth was stimulated when pH 4.5 buffers were included with the vanadate injections. These findings suggest that increasing the availability of water to expanding cells in water-stressed leaves signals rapid increases in outward proton pumping by plasma membrane H+-ATPases. Resultant increases in cell wall extensibility participate in the regulation of water uptake, cell expansion, and leaf growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 μm significantly improved their tolerance to a subsequent heat shock at 55°C for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 μm SA was similar to that obtained with seedlings acclimated at 45°C for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55°C caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45°C acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutron scattering experiments are used to determine scattering profiles for aqueous solutions of hydrophobic and hydrophilic amino acid analogs. Solutions of hydrophobic solutes show a shift in the main diffraction peak to smaller angle as compared with pure water, whereas solutions of hydrophilic solutes do not. The same difference for solutions of hydrophobic and hydrophilic side chains is also predicted by molecular dynamics simulations. The neutron scattering curves of aqueous solutions of hydrophobic amino acids at room temperature are qualitatively similar to differences between the liquid molecular structure functions measured for ambient and supercooled water. The nonpolar solute-induced expansion of water structure reported here is also complementary to recent neutron experiments where compression of aqueous solvent structure has been observed at high salt concentration.