5 resultados para Sugarcane breeding

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparative genetic maps of Papuan Saccharum officinarum L. (2n = 80) and S. robustum (2n = 80) were constructed by using single-dose DNA markers (SDMs). SDM-framework maps of S. officinarum and S. robustum were compared with genetic maps of sorghum and maize by way of anchor restriction fragment length polymorphism probes. The resulting comparisons showed striking colinearity between the sorghum and Saccharum genomes. There were no differences in marker order between S. officinarum and sorghum. Furthermore, there were no alterations in SDM order between S. officinarum and S. robustum. The S. officinarum and S. robustum maps also were compared with the map of the polysomic octoploid S. spontaneum ‘SES 208’ (2n = 64, x = 8), thus permitting relations to homology groups (“chromosomes”) of S. spontaneum to be studied. Investigation of transmission genetics in S. officinarum and S. robustum confirmed preliminary results that showed incomplete polysomy in these species. Because of incomplete polysomy, multiple-dose markers could not be mapped for lack of a genetic model for their segregation. To coalesce S. officinarum and S. robustum linkage groups into homology groups (composed of homologous pairing partners), they were compared with sorghum (2n = 20), which functioned as a synthetic diploid. Groupings suggested by comparative mapping were found to be highly concordant with groupings based on highly polymorphic restriction fragment length polymorphism probes detecting multiple SDMs. The resulting comparative maps serve as bridges to allow information from one Andropogoneae to be used by another, for breeding, ecology, evolution, and molecular biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Albicidin phytotoxins are pathogenicity factors in a devastating disease of sugarcane known as leaf scald, caused by Xanthomonas albilineans. A gene (albD) from Pantoea dispersa has been cloned and sequenced and been shown to code for a peptide of 235 amino acids that detoxifies albicidin. The gene shows no significant homology at the DNA or protein level to any known sequence, but the gene product contains a GxSxG motif that is conserved in serine hydrolases. The AlbD protein, purified to homogeneity by means of a glutathione S-transferase gene fusion system, showed strong esterase activity on p-nitrophenyl butyrate and released hydrophilic products during detoxification of albicidins. AlbD hydrolysis of p-nitrophenyl butyrate and detoxification of albicidins required no complex cofactors. Both processes were strongly inhibited by phenylmethylsulfonyl fluoride, a serine enzyme inhibitor. These data strongly suggest that AlbD is an albicidin hydrolase. The enzyme detoxifies albicidins efficiently over a pH range from 5.8 to 8.0, with a broad temperature optimum from 15 to 35°C. Expression of albD in transformed X. albilineans strains abolished the capacity to release albicidin toxins and to incite disease symptoms in sugarcane. The gene is a promising candidate for transfer into sugarcane to confer a form of disease resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA-mediated, posttranscriptional gene silencing has been determined as the molecular mechanism underlying transgenic virus resistance in many plant virus-dicot host plant systems. In this paper we show that transgenic virus resistance in sugarcane (Saccharum spp. hybrid) is based on posttranscriptional gene silencing. The resistance is derived from an untranslatable form of the sorghum mosaic potyvirus strain SCH coat protein (CP) gene. Transgenic sugarcane plants challenged with sorghum mosaic potyvirus strain SCH had phenotypes that ranged from fully susceptible to completely resistant, and a recovery phenotype was also observed. Clones derived from the same transformation event or obtained after vegetative propagation could display different levels of virus resistance, suggesting the involvement of a quantitative component in the resistance response. Most resistant plants displayed low or undetectable steady-state CP transgene mRNA levels, although nuclear transcription rates were high. Increased DNA methylation was observed in the transcribed region of the CP transgenes in most of these plants. Collectively, these characteristics indicate that an RNA-mediated, homology-dependent mechanism is at the base of the virus resistance. This work extends posttranscriptional gene silencing and homology-dependent virus resistance, so far observed only in dicots, to an agronomically important, polyploid monocot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop gene pools have adapted to and sustained the demands of agricultural systems for thousands of years. Yet, very little is known about their content, distribution, architecture, or circuitry. The presumably shallow elite gene pools often continue to yield genetic gains while the exotic pools remain mostly untapped, uncharacterized, and underutilized. The concept and content of a crop’s gene pools are being changed by advancements in plant science and technology. In the first generation of plant genomics, DNA markers have refined some perceptions of genetic variation by providing a glimpse of a primary source, DNA polymorphism. The markers have provided new and more powerful ways of assessing genetic relationships, diversity, and merit by infusing genetic information for the first time in many scenarios or in a more comprehensive manner for others. As a result, crop gene pools may be supplemented through more rapid and directed methods from a greater variety of sources. Previously limited by the barriers of sexual reproduction, the native gene pools will soon be complemented by another gene pool (transgenes) and perhaps by other native exotic gene pools through comparative analyses of plants’ biological repertoire. Plant genomics will be an important force of change for crop improvement. The plant science community and crop gene pools may be united and enriched as never before. Also, the genomes and gene pools, the products of evolution and crop domestication, will be reduced and subjected to the vagaries and potential divisiveness of intellectual property considerations. Let the gains begin.