7 resultados para Suda lexicon.

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogen deficiency caused by ovariectomy (OVX) results in a marked bone loss due to stimulated bone resorption by osteoclasts. During our investigations of the pathogenesis of bone loss in estrogen deficiency, we found that OVX selectively stimulates B-lymphopoiesis which results in marked accumulation of B220-positive pre-B cells in mouse bone marrow. To examine the possible correlation between stimulated B-lymphopoiesis and bone loss, 8-week-old female mice were treated with interleukin (IL) 7, which stimulates B-lymphopoiesis in bone marrow. We also examined bone mass in IL-7 receptor-knockout mice that exhibit marked suppression of B-lymphopoiesis in the bone marrow. The increased B-lymphopoiesis induced by IL-7 administration resulted in marked bone loss by stimulation of osteoclastic bone resorption in mice with intact ovarian function. The changes in both B-lymphopoiesis and bone mass in IL-7-treated female mice were similar to those in age-matched OVX mice. In contrast, the trabecular bone volume of the femur was greatly increased in both female and male IL-7 receptor-knockout mice when compared with the respective wild-type and heterozygous littermates. These results show that the perturbation of B-lymphopoiesis in the bone marrow is closely linked to the change in bone mass. We propose here that the increased B-lymphopoiesis due to estrogen deficiency is involved in the mechanism of stimulated bone resorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A full-length cDNA for the rat kidney mitochondrial cytochrome P450 mixed function oxidase, 25-hydroxyvitamin D3-1α-hydroxylase (P4501α), was cloned from a vitamin D-deficient rat kidney cDNA library and subcloned into the mammalian expression vector pcDNA 3.1(+). When P4501α cDNA was transfected into COS-7 transformed monkey kidney cells, they expressed 25-hydroxyvitamin D3-1α-hydroxylase activity. The sequence analysis showed that P4501α was of 2,469 bp long and contained an ORF encoding 501 amino acids. The deduced amino acid sequence showed a 53% similarity and 44% identity to the vitamin D3-25-hydroxylase (CYP27), whereas it has 42.6% similarity and 34% identity with the 25-hydroxyvitamin D3-24-hydroxylase (CYP24). Thus, it composes a new subfamily of the CYP27 family. Further, it is more closely related to the CYP27 than to the CYP24. The expression of P4501α mRNA was greatly increased in the kidney of vitamin D-deficient rats. In rats with the enhanced renal production of 1α,25-dihydroxyvitamin D3 (rats fed a low Ca diet), P4501α mRNA was greatly increased in the renal proximal convoluted tubules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ATP-dependent Lon protease of Saccharomyces cerevisiae mitochondria is required for selective proteolysis in the matrix, maintenance of mitochondrial DNA, and respiration-dependent growth. Lon may also possess a chaperone-like function that facilitates protein degradation and protein-complex assembly. To understand the influence of Lon’s ATPase and protease activities on these functions, we examined several Lon mutants for their ability to complement defects of Lon-deleted yeast cells. We also developed a rapid procedure for purifying yeast Lon to homogeneity to study the enzyme’s activities and oligomeric state. A point mutation in either the ATPase or the protease site strongly inhibited the corresponding activity of the pure protein but did not alter the protein’s oligomerization; when expressed at normal low levels neither of these mutant enzymes supported respiration-dependent growth of Lon-deleted cells. When the ATPase- or the protease-containing regions of Lon were expressed as separate truncated proteins, neither could support respiration-dependent growth of Lon-deleted cells; however, coexpression of these two separated regions sustained wild-type growth. These results suggest that yeast Lon contains two catalytic domains that can interact with one another even as separate proteins, and that both are essential for the different functions of Lon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fas is a 45-kDa membrane protein that transduces an apoptotic signal. The mouse lymphoproliferation (lpr) mutation is a leaky mutation of Fas. In this study, we examined lymphocyte development in Fas-null mice generated by gene targeting. The Fas-/- mice progressively accumulated abnormal T cells (Thy1+, B220+, CD4-, and CD8-) and developed lymphadenopathy and splenomegaly, which were much more accelerated and pronounced than those in lpr mice. In addition, the Fas-null mice showed lymphocytosis, accompanied by lymphocytic infiltration in the lungs and liver. The number of apparently normal B cells also increased, and large amounts of immunoglobulins, including anti-DNA antibodies, were produced. Thymic clonal deletion, assessed by deletion of T cells reactive to mouse endogenous superantigens, was apparently normal in the Fas-/- mice, whereas the peripheral clonal deletion of mature T cells against a bacterial superantigen was impaired. These results suggested that Fas plays a decisive role in peripheral clonal deletion but not in negative selection in the thymus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vitamin D endocrine system is regulated reciprocally by renal 25-hydroxyvitamin D3 1 alpha- and 24-hydroxylases. Previously, we reported that renal proximal convoluted tubules, the major site of 1 alpha, 25-dihydroxyvitamin D3 production, have vitamin D receptors. In the presence of vitamin D receptors, renal proximal convoluted tubules cannot maintain the state of enhanced production of 1 alpha, 25-dihydroxyvitamin D3. To clarify this discrepancy, we proposed a working hypothesis for the reciprocal control of renal 25-hydroxyvitamin D3 1 alpha- and 24-hydroxylase activities. In rat models of enhanced renal production of 1 alpha, 25-dihydroxyvitamin D3, expression of vitamin D receptors and 25-hydroxyvitamin D3 24-hydroxylase mRNAs was strikingly suppressed in renal proximal convoluted tubules but not in the cortical collecting ducts. In vitamin D-deficient rats with up-regulated renal 25-hydroxyvitamin D3 1 alpha-hydroxylase activity, expression of vitamin D receptor mRNA in renal proximal convoluted tubules was also down-regulated, indicating that the down-regulation of vitamin D receptor mRNA is not the result of the enhanced production of 1 alpha, 25-dihydroxyvitamin D3. In Japanese quail models with up-regulated renal 25-hydroxyvitamin D3 1 alpha-hydroxylase activity by sex steroids, expression of vitamin D receptor mRNA was also down-regulated in the kidney but not in the duodenum. These results suggest that the down-regulation of vitamin D receptors plays a critical role in production of 1 alpha, 25-dihydroxyvitamin D3 in renal proximal convoluted tubules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage-stimulating protein (MSP) was originally identified as an inducer of murine resident peritoneal macrophage responsiveness to chemoattractants. We recently showed that the product of RON, a protein tyrosine kinase cloned from a human keratinocyte library, is the receptor for MSP. Similarity of murine stk to RON led us to determine if the stk gene product is the murine receptor for MSP. Radiolabeled MSP could bind to NIH 3T3 cells transfected with murine stk cDNA (3T3/stk). Binding was saturable and was inhibited by unlabeled MSP but not by structurally related proteins, including hepatocyte growth factor and plasminogen. Specific binding to STK was demonstrated by cross-linking of 125I-labeled MSP to membrane proteins of 3T3/stk cells, which resulted in a protein complex with a molecular mass of 220 kDa. This radiolabeled complex comprised 125I-MSP and STK, since it could be immunoprecipitated by antibodies to the STK beta chain. Binding of MSP to stk cDNA-transfected cells induced tyrosine phosphorylation of the 150-kDa STK beta chain within 1 min and caused increased motile activity. These results establish the murine stk gene product as a specific transmembrane protein tyrosine kinase receptor for MSP. Inasmuch as the stk cDNA was cloned from a hematopoietic stem cell, our data suggest that in addition to macrophages and keratinocytes, a cell in the hematopoietic lineage may also be a target for MSP.