3 resultados para Subsequential Completeness

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report explores the mechanism of spontaneous closure of full-thickness skin wounds. The domestic pig, often used as a human analogue for skin wound repair studies, closes these wounds with kinetics similar to those in the guinea pig (mobile skin), even though the porcine dermis on the back is thick and nearly immobile. In the domestic pig, as in the guinea pig, daily full-thickness excisions of the central granulation tissue up to but not including the wound edges in both back and flank wounds do not alter the rate or completeness of wound closure or the final pattern of the scar. A purse-string mechanism of closure was precluded by showing that surgical interruption of wound edge continuity does not alter closure kinetics or wound shape. We conclude that "tightness" of skin is not a key factor nor is the central granulation tissue required for normal wound closure. These data imply that in vitro models such as contraction of isolated granulation tissue or of the cell-populated collagen lattice may not be relevant for understanding the cell biology of in vivo wound closure. Implications for the mechanism for wound closure are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using taxonomic characters derived from EcoRI restriction endonuclease digestion of genomic DNA and hybridization with a labeled rRNA operon from Escherichia coli, a polymorphic structure of Listeria monocytogenes, characterized by fragments with different frequencies of occurrence, was observed. This structure was expanded by creating predicted patterns through a recursive process of observation, expectation, prediction, and assessment of completeness. This process was applied, in turn, to normalized strain patterns, fragment bands, and positions of EcoRI recognition sites relative to rRNA regions. Analysis of 1346 strains provided observed patterns, fragment sizes, and their frequencies of occurrence in the patterns. Fragment size statistics led to the creation of unobserved combinations of bands, predicted pattern types. The observed fragment bands revealed positions of EcoRI sites relative to rRNA sequences. Each EcoRI site had a frequency of occurrence, and unobserved fragment sizes were postulated on the basis of knowing the restriction site locations. The result of the recursion process applied to the components of the strain data was an extended classification with observed and predicted members.