6 resultados para Study of multiple cases

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lethal factor is a protease, one component of Bacillus anthracis exotoxin, which cleaves many of the mitogen-activated protein kinase kinases (MEKs). Given the importance of MEK signaling in tumorigenesis, we assessed the effects of anthrax lethal toxin (LeTx) on tumor cells. LeTx was very effective in inhibiting mitogen-activated protein kinase activation in V12 H-ras-transformed NIH 3T3 cells. In vitro, treatment of transformed cells with LeTx caused them to revert to a nontransformed morphology, and inhibited their abilities to form colonies in soft agar and to invade Matrigel without markedly affecting cell proliferation. In vivo, LeTx inhibited growth of ras-transformed cells implanted in athymic nude mice (in some cases causing tumor regression) at concentrations that caused no apparent animal toxicity. Unexpectedly, LeTx also greatly decreased tumor neovascularization. These results demonstrate that LeTx potently inhibits ras-mediated tumor growth and is a potential antitumor therapeutic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional mechanisms thought to underlie opioid tolerance include receptor phosphorylation/down-regulation, G-protein uncoupling, and adenylyl cyclase superactivation. A parallel line of investigation also indicates that opioid tolerance development results from a switch from predominantly opioid receptor Giα inhibitory to Gβγ stimulatory signaling. As described previously, this results, in part, from the increased relative abundance of Gβγ-stimulated adenylyl cyclase isoforms as well as from a profound increase in their phosphorylation [Chakrabarti, S., Rivera, M., Yan, S.-Z., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 655–662; Chakrabarti, S., Wang, L., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 949–953]. The present study demonstrates that chronic morphine administration results in the concomitant phosphorylation of three key signaling proteins, G protein receptor kinase (GRK) 2/3, β-arrestin, and Gβ, in the guinea pig longitudinal muscle myenteric plexus tissue. Augmented phosphorylation of all three proteins is evident in immunoprecipitate obtained by using either anti-GRK2/3 or Gβ antibodies, but the phosphorylation increment is greater in immunoprecipitate obtained with Gβ antibodies. Analyses of coimmunoprecipitated proteins indicate that phosphorylation of GRK2/3, β-arrestin, and Gβ has varying consequences on their ability to associate. As a result, increased availability of and signaling via Gβγ could occur without compromising the membrane content (and presumably activity) of GRK2/3. Induction of the concomitant phosphorylation of multiple proteins in a multimolecular complex with attendant modulation of their association represents a novel mechanism for increasing Gβγ signaling and opioid tolerance formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in 12 genes regulating Drosophila melanogaster mushroom body (MB) development were each studied in two genetic backgrounds. In all cases, brain structure was qualitatively or quantitatively different after replacement of the "original" genetic background with that of the Canton Special wild-type strain. The mushroom body miniature gene (mbm) was investigated in detail. mbm supports the maintenance of MB Kenyon cell fibers in third instar larvae and their regrowth during metamorphosis. Adult mbm1 mutant females are lacking many or most Kenyon cell fibers and are impaired in MB-mediated associative odor learning. We show here that structural defects in mbm1 are apparent only in combination with an X-linked, dosage-dependent modifier (or modifiers). In the Canton Special genetic background, the mbm1 anatomical phenotype is suppressed, and MBs develop to a normal size. However, the olfactory learning phenotype is not fully restored, suggesting that submicroscopic defects persist in the MBs. Mutant mbm1 flies with full-sized MBs have normal retention but show a specific acquisition deficit that cannot be attributed to reductions in odor avoidance, shock reactivity, or locomotor behavior. We propose that polymorphic gene interactions (in addition to ontogenetic factors) determine MB size and, concomitantly, the ability to recognize and learn odors.