7 resultados para Stress and Work
em National Center for Biotechnology Information - NCBI
Resumo:
Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpesviruses.
Resumo:
If environmental stress provides conditions under which positive relationships between plant species richness and productivity become apparent, then species that seem functionally redundant under constant conditions may add to community functioning under variable conditions. Using naturally co-occurring mosses and liverworts, we constructed bryophyte communities to test relationships between species diversity (1, 2, 4, 8, 16, 24, or 32 species) and productivity under constant conditions and when exposed to experimental drought. We found no relationship between species richness and biomass under constant conditions. However, when communities were exposed to experimental drought, biomass increased with species richness. Responses of individual species demonstrated that facilitative interactions rather than sampling effects or niche complementarity best explained results—survivorship increased for almost all species, and those species least resistant to drought in monoculture had the greatest increase in biomass. Positive interactions may be an important but previously underemphasized mechanism linking high diversity to high productivity under stressful environmental conditions.
Resumo:
Root cortical and stelar protoplasts were isolated from maize (Zea mays L.) plants that were either well watered or water stressed, and the patch-clamp technique was used to investigate their plasma membrane K+ channel activity. In the root cortex water stress did not significantly affect inward- or outward-rectifying K+ conductances relative to those observed in well-watered plants. In contrast, water stress significantly reduced the magnitude of the outward-rectifying K+ current in the root stele but had little effect on the inward-rectifying K+ current. Pretreating well-watered plants with abscisic acid also significantly affected K+ currents in a way that was consistent with abscisic acid mediating, at least in part, the response of roots to water stress. It is proposed that the K+ channels underlying the K+ currents in the root stelar cells represent pathways that allow K+ exchange between the root symplasm and xylem apoplast. It is suggested that the regulation of K+ channel activity in the root in response to water stress could be part of an important adaptation of the plant to survive drying soils.
Resumo:
Apoptosis induced by wild-type p53 or cytotoxic compounds in myeloid leukemic cells can be inhibited by the cytokines interleukin 6, interleukin 3, granulocyte-macrophage colony-stimulating factor, and interferon gamma and by antioxidants. The antioxidants and cytokines showed a cooperative protective effect against induction of apoptosis. Cells with a higher intrinsic level of peroxide production showed a higher sensitivity to induction of apoptosis and required a higher cytokine concentration to inhibit apoptosis. Decreasing the intrinsic oxidative stress in cells by antioxidants thus inhibited apoptosis, whereas increasing this intrinsic stress by adding H2O2 enhanced apoptosis. Induction of apoptosis by wild-type p53 was not preceded by increased peroxide production or lipid peroxidation and the protective effect of cytokines was not associated with a decrease in these properties. The results indicate that the intrinsic degree of oxidative stress can regulate cell susceptibility to wild-type p53-dependent and p53-independent induction of apoptosis and the ability of cytokines to protect cells against apoptosis.
Resumo:
The mechanisms by which stress and anti-depressants exert opposite effects on the course of clinical depression are not known. However, potential candidates might include neurotrophic factors that regulate the development, plasticity, and survival of neurons. To explore this hypothesis, we examined the effects of stress and antidepressants on neurotrophin expression in the locus coeruleus (LC), which modulates many of the behavioral and physiological responses to stress and has been implicated in mood disorders. Using in situ hybridization, we demonstrate that neurotrophin 3 (NT-3) is expressed in noradrenergic neurons of the LC. Recurrent, but not acute, immobilization stress increased NT-3 mRNA levels in the LC. In contrast, chronic treatment with antidepressants decreased NT-3 mRNA levels. The effect occurred in response to antidepressants that blocked norepinephrine uptake, whereas serotonin-specific reuptake inhibitors did not alter NT-3 levels. Electroconvulsive seizures also decreased NT-3 expression in the LC as well as the hippocampus. Ntrk3 (neurotrophic tyrosine kinase receptor type 3; formerly TrkC), the receptor for NT-3, is expressed in the LC, but its mRNA levels did not change with stress or antidepressant treatments. Because, NT-3 is known to be trophic for LC neurons, our results raise the possibility that some of the effects of stress and antidepressants on LC function and plasticity could be mediated through NT-3. Moreover, the coexpression of NT-3 and its receptor in the LC suggests the potential for autocrine mechanisms of action.