26 resultados para Stress Proteins
em National Center for Biotechnology Information - NCBI
Resumo:
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 μmol m−2 s−1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.
Resumo:
The mammalian renal toxicant tetrafluoroethylcysteine (TFEC) is metabolized to a reactive intermediate that covalently modifies the lysine residues of a select group of mitochondrial proteins, forming difluorothioamidyl lysine protein adducts. Cellular damage is initiated by this process and cell death ensues. NH2-terminal sequence analysis of purified mitochondrial proteins containing difluorothioamidyl lysine adducts identified the lipoamide succinyltransferase and dihydrolipoamide dehydrogenase subunits of the α-ketoglutarate dehydrogenase complex (αKGDH), a key regulatory component of oxidative metabolism, as targets for TFEC action. Adduct formation resulted in marked inhibition of αKGDH enzymatic activity, whereas the related pyruvate dehydrogenase complex was unmodified by TFEC and its activity was not inhibited in vivo. Covalent modification of αKGDH subunits also resulted in interactions with mitochondrial chaperonin HSP60 in vivo and with HSP60 and mitochondrial HSP70 in vitro. These observations confirm the role of mammalian stress proteins in the recognition of abnormal proteins and provide supporting evidence for reactive metabolite-induced cell death by modification of critical protein targets.
Resumo:
The small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as molecular chaperones to prevent irreversible protein denaturation. We characterized the chaperone activity of Synechocystis HSP17 and found that it has not only protein-protective activity, but also a previously unrecognized ability to stabilize lipid membranes. Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding. Large unilamellar vesicles made of synthetic and cyanobacterial lipids were found to modulate this refolding process. Investigation of HSP17-lipid interactions revealed a preference for the liquid crystalline phase and resulted in an elevated physical order in model lipid membranes. Direct evidence for the participation of HSP17 in the control of thylakoid membrane physical state in vivo was gained by examining an hsp17− deletion mutant compared with the isogenic wild-type hsp17+ revertant Synechocystis cells. We suggest that, together with GroEL, HSP17 behaves as an amphitropic protein and plays a dual role. Depending on its membrane or cytosolic location, it may function as a “membrane stabilizing factor” as well as a member of a multichaperone protein-folding network. Membrane association of sHSPs could antagonize the heat-induced hyperfluidization of specific membrane domains and thereby serve to preserve structural and functional integrity of biomembranes.
Resumo:
A gene encoding a product with substantial similarity to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was identified in the preliminary genome sequence of the green sulfur bacterium Chlorobium tepidum. A highly similar gene was subsequently isolated and sequenced from Chlorobium limicola f.sp. thiosulfatophilum strain Tassajara. Analysis of these amino acid sequences indicated that they lacked several conserved RubisCO active site residues. The Chlorobium RubisCO-like proteins are most closely related to deduced sequences in Bacillus subtilis and Archaeoglobus fulgidus, which also lack some typical RubisCO active site residues. When the C. tepidum gene encoding the RubisCO-like protein was disrupted, the resulting mutant strain displayed a pleiotropic phenotype with defects in photopigment content, photoautotrophic growth and carbon fixation rates, and sulfur metabolism. Most important, the mutant strain showed substantially enhanced accumulation of two oxidative stress proteins. These results indicated that the C. tepidum RubisCO-like protein might be involved in oxidative stress responses and/or sulfur metabolism. This protein might be an evolutional link to bona fide RubisCO and could serve as an important tool to analyze how the RubisCO active site developed.
Resumo:
The cDNA sequence for CAP160, an acidic protein previously linked with cold acclimation in spinach (Spinacia oleracea L.), was characterized and found to encode a novel acidic protein of 780 amino acids having very limited homology to a pair of Arabidopsis thaliana stress-regulated proteins, rd29A and rd29B. The lack of similarity in the structural organization of the spinach and Arabidopsis genes highlights the absence of a high degree of conservation of this cold-stress gene across taxonomic boundaries. The protein has several unique motifs that may relate to its function during cold stress. Expression of the CAP160 mRNA was increased by low-temperature exposure and water stress in a manner consistent with a probable function during stresses that involve dehydration. The coding sequences for CAP160 and CAP85, another spinach cold-stress protein, were introduced into tobacco (Nicotiana tabacum) under the control of the 35S promoter using Agrobacterium tumefaciens-based transformation. Tobacco plants expressing the proteins individually or coexpressing both proteins were evaluated for relative freezing-stress tolerance. The killing temperature for 50% of the cells of the transgenic plants was not different from that of the wild-type plants. As determined by a more sensitive time/temperature kinetic study, plants expressing the spinach proteins had slightly lower levels of electrolyte leakage than wild-type plants, indicative of a small reduction of freezing-stress injury. Clearly, the heterologous expression of two cold-stress proteins had no profound influence on stress tolerance, a result that is consistent with the quantitative nature of cold-stress-tolerance traits.
Resumo:
The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.
Resumo:
Many stress proteins and their cognates function as molecular chaperones or as components of proteolytic systems. Viral infection can stimulate synthesis of stress proteins and particular associations of viral and stress proteins have been documented. However, demonstrations of functions for stress proteins in viral life cycles are few. We have initiated an investigation of the roles of stress proteins in eukaryotic viral life cycles using as a model the Ty3 retrovirus-like element of Saccharomyces cerevisiae. During stress, Ty3 transposition is inhibited; Ty3 DNA is not synthesized and, although precursor proteins are detected, mature Ty3 proteins and virus-like particles (VLPs) do not accumulate. The same phenotype is observed in the constitutively stressed ssa1 ssa2 mutant, which lacks two cytoplasmic members of the hsp70 family of chaperones. Ty3 VLPs preformed under nonstress conditions are degraded more rapidly if cells are shifted from 30 degrees C to 37 degrees C. These results suggest that Ty3 VLPs are destroyed by cellular stress proteins. Elevated expression of the yeast UBP3 gene, which encodes a protease that removes ubiquitin from proteins, allows mature Ty3 proteins and VLPs to accumulate in the ssa1 ssa2 mutant, suggesting that, at least under stress conditions, ubiquitination plays a role in regulating Ty3 transposition.
Resumo:
The avian erythroblastosis viral oncogene (v-erbB) encodes a receptor tyrosine kinase that possesses sarcomagenic and leukemogenic potential. We have expressed transforming and nontransforming mutants of v-erbB in fibroblasts to detect transformation-associated signal transduction events. Coimmunoprecipitation and affinity chromatography have been used to identify a transformation-associated, tyrosine phosphorylated, multiprotein complex. This complex consists of Src homologous collagen protein (Shc), growth factor receptor binding protein 2 (Grb2), son of sevenless (Sos), and a novel tyrosine phosphorylated form of the cytoskeletal regulatory protein caldesmon. Immunofluorescence localization studies further reveal that, in contrast to the distribution of caldesmon along actin stress fibers in normal fibroblasts, caldesmon colocalizes with Shc in plasma membrane blebs in transformed fibroblasts. This colocalization of caldesmon and Shc correlates with actin stress fiber disassembly and v-erbB-mediated transformation. The tyrosine phosphorylation of caldesmon, and its association with the Shc–Grb2–Sos signaling complex directly links tyrosine kinase oncogenic signaling events with cytoskeletal regulatory processes, and may define one mechanism regulating actin stress fiber disassembly in transformed cells.
Rho and Rab Small G Proteins Coordinately Reorganize Stress Fibers and Focal Adhesions in MDCK Cells
Resumo:
The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.
Resumo:
We report the study of the dynamics of the unbinding process under a force load f of adsorbed proteins (fibrinogen) on a solid surface (hydrophilic silica) by means of atomic force microscopy spectroscopy. By varying the loading rate rf, defined by f = rf t, t being the time, we find that, as for specific interactions, the mean rupture force increases with rf. This unbinding process is analyzed in the framework of the widely used Bell model. The typical dissociation rate at zero force entering in the model lies between 0.02 and 0.6 s−1. Each measured rupture is characterized by a force f0, which appears to be quantized in integer multiples of 180–200 pN.
Resumo:
Transcriptional induction of many stress-response genes is dependent on stress-induced nuclear accumulation of stress-activated protein kinases (SAPKs). In the fission yeast Schizosaccharomyces pombe, nuclear accumulation of the SAPK Spc1 (also known as StyI) requires activating phosphorylation catalyzed by the SAPK kinase Wis1; however, it is unknown whether the localization of Spc1 is regulated by nuclear transport factors. Herein are reported studies that show that Spc1 localization is regulated by active transport mechanisms during osmotic stress. Nuclear import of Spc1 requires Pim1, a homologue of the guanine nucleotide exchange factor RCC1 that is essential for nucleocytoplasmic shuttling of proteins. Nuclear export of Spc1 is regulated by the export factor Crm1. An Spc1–Crm1 complex forms as Spc1 is exported from the nucleus. Wis1 and the tyrosine phosphatases Pyp1 and Pyp2 that inactivate Spc1 are excluded from the nucleus by a Crm1-independent mechanism; hence the nuclear import of Spc1 leads to transient isolation from its regulatory proteins. Thus, active nucleocytoplasmic shuttling is required for both the function and regulation of Spc1 during the osmotic shock response.
Resumo:
Stress fibers were isolated from cultured human foreskin fibroblasts and bovine endothelial cells, and their contraction was demonstrated in vitro. Cells in culture dishes were first treated with a low-ionic-strength extraction solution and then further extracted using detergents. With gentle washes by pipetting, the nucleus and the apical part of cells were removed. The material on the culture dish was scraped, and the freed material was forced through a hypodermic needle and fractionated by sucrose gradient centrifugation. Isolated, free-floating stress fibers stained brightly with fluorescently labeled phalloidin. When stained with anti-α-actinin or anti-myosin, isolated stress fibers showed banded staining patterns. By electron microscopy, they consisted of bundles of microfilaments, and electron-dense areas were associated with them in a semiperiodic manner. By negative staining, isolated stress fibers often exhibited gentle twisting of microfilament bundles. Focal adhesion–associated proteins were also detected in the isolated stress fiber by both immunocytochemical and biochemical means. In the presence of Mg-ATP, isolated stress fibers shortened, on the average, to 23% of the initial length. The maximum velocity of shortening was several micrometers per second. Polystyrene beads on shortening isolated stress fibers rotated, indicating spiral contraction of stress fibers. Myosin regulatory light chain phosphorylation was detected in contracting stress fibers, and a myosin light chain kinase inhibitor, KT5926, inhibited isolated stress fiber contraction. Our study demonstrates that stress fibers can be isolated with no apparent loss of morphological features and that they are truly contractile organelle.
Resumo:
Endothelial barrier function is regulated at the cellular level by cytoskeletal-dependent anchoring and retracting forces. In the present study we have examined the signal transduction pathways underlying agonist-stimulated reorganization of the actin cytoskeleton in human umbilical vein endothelial cells. Receptor activation by thrombin, or the thrombin receptor (proteinase-activated receptor 1) agonist peptide, leads to an early increase in stress fiber formation followed by cortical actin accumulation and cell rounding. Selective inhibition of thrombin-stimulated signaling systems, including Gi/o (pertussis toxin sensitive), p42/p44, and p38 MAP kinase cascades, Src family kinases, PI-3 kinase, or S6 kinase pathways had no effect on the thrombin response. In contrast, staurosporine and KT5926, an inhibitor of myosin light chain kinase, effectively blocked thrombin-induced cell rounding and retraction. The contribution of Rho to these effects was analyzed by using bacterial toxins that either activate or inhibit the GTPase. Escherichia coli cytotoxic necrotizing factor 1, an activator of Rho, induced the appearance of dense actin cables across cells without perturbing monolayer integrity. Accordingly, lysophosphatidic acid, an activator of Rho-dependent stress fiber formation in fibroblasts, led to reorganization of polymerized actin into stress fibers but failed to induce cell rounding. Inhibition of Rho with Clostridium botulinum exoenzyme C3 fused to the B fragment of diphtheria toxin caused loss of stress fibers with only partial attenuation of thrombin-induced cell rounding. The implication of Rac and Cdc42 was analyzed in transient transfection experiments using either constitutively active (V12) or dominant-interfering (N17) mutants. Expression of RacV12 mimicked the effect of thrombin on cell rounding, and RacN17 blocked the response to thrombin, whereas Cdc42 mutants were without effect. These observations suggest that Rho is involved in the maintenance of endothelial barrier function and Rac participates in cytoskeletal remodeling by thrombin in human umbilical vein endothelial cells.
Resumo:
An intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, called the unfolded protein response (UPR), is activated when unfolded proteins are accumulated in the ER under a variety of stress conditions (“ER stress”). We and others recently identified Hac1p/Ern4p as a transcription factor responsible for the UPR in Saccharomyces cerevisiae. It was further reported that Hac1p (238 aa) is detected only in ER-stressed cells, and its expression is mediated by unconventional splicing of HAC1 precursor mRNA. The splicing replaces the C-terminal portion of Hac1p; it was proposed that precursor mRNA is also translated but the putative product of 230 aa is rapidly degraded by the ubiquitin–proteasome pathway. We have identified and characterized the same regulated splicing and confirmed its essential features. Contrary to the above proposal, however, we find that the 238-aa product of mature mRNA and the 230-aa-type protein tested are highly unstable with little or no difference in stability. Furthermore, we demonstrate that the absence of Hac1p in unstressed cells is due to the lack of translation of precursor mRNA. We conclude that Hac1p is synthesized as the result of ER stress-induced mRNA splicing, leading to activation of the UPR.
Resumo:
Severe heat stress causes protein denaturation in various cellular compartments. If Saccharomyces cerevisiae cells grown at 24°C are preconditioned at 37°C, proteins denatured by subsequent exposure to 48–50°C can be renatured when the cells are allowed to recover at 24°C. Conformational repair of vital proteins is essential for survival, because gene expression is transiently blocked after the thermal insult. Refolding of cytoplasmic proteins requires the Hsp104 chaperone, and refolding of lumenal endoplasmic reticulum (ER) proteins requires the Hsp70 homologue Lhs1p. We show here that conformational repair of heat-damaged glycoproteins in the ER of living yeast cells required functional Hsp104. A heterologous enzyme and a number of natural yeast proteins, previously translocated and folded in the ER and thereafter denatured by severe heat stress, failed to be refolded to active and secretion-competent structures in the absence of Hsp104 or when an ATP-binding site of Hsp104 was mutated. During recovery at 24°C, the misfolded proteins persisted in the ER, although the secretory apparatus was fully functional. Hsp104 appears to control conformational repair of heat-damaged proteins even beyond the ER membrane.