9 resultados para Strengthening the architectural technology discipline
em National Center for Biotechnology Information - NCBI
Resumo:
This paper introduces the session "Technology in the Year 2001" and is the first of four papers dealing with the future of human-machine communication by voice. In looking to the future it is important to recognize both the difficulties of technological forecasting and the frailties of the technology as it exists today--frailties that are manifestations of our limited scientific understanding of human cognition. The technology to realize truly advanced applications does not yet exist and cannot be supported by our presently incomplete science of speech. To achieve this long-term goal, the authors advocate a fundamental research program using a cybernetic approach substantially different from more conventional synthetic approaches. In a cybernetic approach, feedback control systems will allow a machine to adapt to a linguistically rich environment using reinforcement learning.
Resumo:
In 1979, Lewontin and I borrowed the architectural term “spandrel” (using the pendentives of San Marco in Venice as an example) to designate the class of forms and spaces that arise as necessary byproducts of another decision in design, and not as adaptations for direct utility in themselves. This proposal has generated a large literature featuring two critiques: (i) the terminological claim that the spandrels of San Marco are not true spandrels at all and (ii) the conceptual claim that they are adaptations and not byproducts. The features of the San Marco pendentives that we explicitly defined as spandrel-properties—their necessary number (four) and shape (roughly triangular)—are inevitable architectural byproducts, whatever the structural attributes of the pendentives themselves. The term spandrel may be extended from its particular architectural use for two-dimensional byproducts to the generality of “spaces left over,” a definition that properly includes the San Marco pendentives. Evolutionary biology needs such an explicit term for features arising as byproducts, rather than adaptations, whatever their subsequent exaptive utility. The concept of biological spandrels—including the examples here given of masculinized genitalia in female hyenas, exaptive use of an umbilicus as a brooding chamber by snails, the shoulder hump of the giant Irish deer, and several key features of human mentality—anchors the critique of overreliance upon adaptive scenarios in evolutionary explanation. Causes of historical origin must always be separated from current utilities; their conflation has seriously hampered the evolutionary analysis of form in the history of life.
Resumo:
The intensely studied MHC has become the paradigm for understanding the architectural evolution of vertebrate multigene families. The 4-Mb human MHC (also known as the HLA complex) encodes genes critically involved in the immune response, graft rejection, and disease susceptibility. Here we report the continuous 1,796,938-bp genomic sequence of the HLA class I region, linking genes between MICB and HLA-F. A total of 127 genes or potentially coding sequences were recognized within the analyzed sequence, establishing a high gene density of one per every 14.1 kb. The identification of 758 microsatellite provides tools for high-resolution mapping of HLA class I-associated disease genes. Most importantly, we establish that the repeated duplication and subsequent diversification of a minimal building block, MIC-HCGIX-3.8–1-P5-HCGIV-HLA class I-HCGII, engendered the present-day MHC. That the currently nonessential HLA-F and MICE genes have acted as progenitors to today’s immune-competent HLA-ABC and MICA/B genes provides experimental evidence for evolution by “birth and death,” which has general relevance to our understanding of the evolutionary forces driving vertebrate multigene families.
Resumo:
Activation of gene transcription in eukaryotes requires the cooperative assembly of an initiation complex containing many protein subunits. The necessity that these components contact each other and the promoter/enhancer in defined ways suggests that their spatial arrangement might influence the activation response. Indeed, growing evidence indicates that DNA architecture can profoundly affect transcriptional potency. Much less is known about the influence of protein architecture on transcriptional activation. Here, we examine the architectural dependence of activator function through the analysis of matched pairs of AP-1•DNA complexes differing only in their orientation. Mutation of a critical Arg residue in the basic-leucine zipper domain of either Fos or Jun yielded single point-mutant heterodimers that bind DNA in a single defined orientation, as determined directly by native chemical ligation/affinity cleavage; by contrast, the corresponding wild-type protein binds DNA as a roughly equal mixture of two isomeric orientations, which are related by subunit interchange. The stereochemistry of the point-mutant heterodimers could be switched by inversion of a C•G base pair in the center of the AP-1 site, thus providing access to both fixed orientational isomers. Yeast reporter gene assays consistently revealed that one orientational isomer activates transcription at least 10-fold more strongly than the other. These results suggest that protein architecture, especially the spatial relationship of the activation domain to the promoter, can exert a powerful influence on activator potency.
Resumo:
We have investigated the dynamic behavior of cytoskeletal fine structure in the lamellipodium of nerve growth cones using a new type of polarized light microscope (the Pol-Scope). Pol-Scope images display with exquisite resolution and definition birefringent fine structures, such as filaments and membranes, without having to treat the cell with exogenous dyes or fluorescent labels. Furthermore, the measured birefringence of protein fibers in the thin lamellipodial region can be interpreted in terms of the number of filaments in the bundles. We confirmed that birefringent fibers are actin-based using conventional fluorescence-labeling methods. By recording movies of time-lapsed Pol-Scope images, we analyzed the creation and dynamic composition of radial fibers, filopodia, and intrapodia in advancing growth cones. The strictly quantitative information available in time-lapsed Pol-Scope images confirms previously deduced behavior and provides new insight into the architectural dynamics of filamentous actin.
Resumo:
Here we present the successful application of the microarray technology platform to the analysis of DNA polymorphisms. Using the rice genome as a model, we demonstrate the potential of a high-throughput genome analysis method called Diversity Array Technology, DArT‘. In the format presented here the technology is assaying for the presence (or amount) of a specific DNA fragment in a representation derived from the total genomic DNA of an organism or a population of organisms. Two different approaches are presented: the first involves contrasting two representations on a single array while the second involves contrasting a representation with a reference DNA fragment common to all elements of the array. The Diversity Panels created using this method allow genetic fingerprinting of any organism or group of organisms belonging to the gene pool from which the panel was developed. Diversity Arrays enable rapid and economical application of a highly parallel, solid-state genotyping technology to any genome or complex genomic mixtures.
Resumo:
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies—chimeric nucleases and triplex-forming oligonucleotides—for stimulating recombination in cells.
Resumo:
Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching morphogenesis and resulted in similar cystic malformation of the lung. Thus, it appears that precise temporal and spatial expression of KGF is likely to play a crucial role in the control of branching morphogenesis during fetal lung development.
Resumo:
Research in speech recognition and synthesis over the past several decades has brought speech technology to a point where it is being used in "real-world" applications. However, despite the progress, the perception remains that the current technology is not flexible enough to allow easy voice communication with machines. The focus of speech research is now on producing systems that are accurate and robust but that do not impose unnecessary constraints on the user. This chapter takes a critical look at the shortcomings of the current speech recognition and synthesis algorithms, discusses the technical challenges facing research, and examines the new directions that research in speech recognition and synthesis must take in order to form the basis of new solutions suitable for supporting a wide range of applications.