12 resultados para Stratospheric circulation
em National Center for Biotechnology Information - NCBI
Resumo:
Lipocalin-type prostaglandin D synthase (L-PGDS) is localized in the central nervous system and male genital organs of various mammals and is secreted as β-trace into the closed compartment of these tissues separated from the systemic circulation. In this study, we found that the mRNA for the human enzyme was expressed most intensely in the heart among various tissues examined. In human autopsy specimens, the enzyme was localized immunocytochemically in myocardial cells, atrial endocardial cells, and a synthetic phenotype of smooth muscle cells in the arteriosclerotic intima, and accumulated in the atherosclerotic plaque of coronary arteries with severe stenosis. In patients with stable angina (75–99% stenosis), the plasma level of L-PGDS was significantly (P < 0.05) higher in the great cardiac vein (0.694 ± 0.054 μg/ml, n = 7) than in the coronary artery (0.545 ± 0.034 μg/ml), as determined by a sandwich enzyme immunoassay. However, the veno-arterial difference in the plasma L-PGDS concentration was not observed in normal subjects without stenosis. After a percutaneous transluminal coronary angioplasty was performed to compress the stenotic atherosclerotic plaques, the L-PGDS concentration in the cardiac vein decreased significantly (P < 0.05) to 0.610 ± 0.051 μg/ml at 20 min and reached the arterial level within 1 h. These findings suggest that L-PGDS is present in both endocardium and myocardium of normal subjects and the stenotic site of patients with stable angina and is secreted into the coronary circulation.
Resumo:
We have developed a fluorimetric assay with the use of the dye FM1-43 to determine the rate at which Dictyostelium amoebae endocytose their surface membrane. Our results show that they do so about once each 4–10 min. A clathrin null mutant takes its surface up only ∼30% more slowly, showing that this membrane uptake cannot be caused by clathrin-coated vesicles. Surprisingly, Ax2 and its parent, NC4, which differ in their rates of fluid-phase internalization by ∼60-fold, take up their surfaces at the same rates. These results show that, in axenic cells, the uptake of fluid and of surface area are separate processes. The large activity of this new endocytic cycle in both Ax2 and NC4 amoebae appears capable of delivering sufficient new surface area to advance the cells’ fronts during migration.
Resumo:
To quantify the reactions of nitric oxide (NO) with hemoglobin under physiological conditions and to test models of NO transport on hemoglobin, we have developed an assay to measure NO–hemoglobin reaction products in normal volunteers, under basal conditions and during NO inhalation. NO inhalation markedly raised total nitrosylated hemoglobin levels, with a significant arterial–venous gradient, supporting a role for hemoglobin in the transport and delivery of NO. The predominant species accounting for this arterial–venous gradient is nitrosyl(heme)hemoglobin. NO breathing increases S-nitrosation of hemoglobin β-chain cysteine 93, however only to a fraction of the level of nitrosyl(heme)hemoglobin and without a detectable arterial–venous gradient. A strong correlation between methemoglobin and plasma nitrate formation was observed, suggesting that NO metabolism is a primary physiological cause of hemoglobin oxidation. Our results demonstrate that NO–heme reaction pathways predominate in vivo, NO binding to heme groups is a rapidly reversible process, and S-nitrosohemoglobin formation is probably not a primary transport mechanism for NO but may facilitate NO release from heme.
Resumo:
Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ≈11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills–mountains vs. plains biomes; and from 8,000–5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric “Altithermal” conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ≈12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.
Resumo:
Academic medical librarians responsible for monograph acquisition face a challenging task. From the plethora of medical monographs published each year, academic medical librarians must select those most useful to their patrons. Unfortunately, none of the selection tools available to medical librarians are specifically intended to assist academic librarians with medical monograph selection. The few short core collection lists that are available are intended for use in the small hospital or internal medicine department library. As these are the only selection tools available, however, many academic medical librarians spend considerable time reviewing these collection lists and place heavy emphasis on the acquisition of listed books. The study reported here was initiated to determine whether the circulation of listed books in an academic library justified the emphasis placed on the acquisition of these books. Circulation statistics for “listed” and “nonlisted” books in the hematology (WH) section of Indiana University School of Medicine's Ruth Lilly Medical Library were studied. The average circulation figures for listed books were nearly two times as high as the corresponding figures for the WH books in general. These data support the policies of those academic medical libraries that place a high priority on collection of listed books.
Resumo:
This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Niño-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower δ18O values at numerous sites in the world’s tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century.
Resumo:
Two views currently dominate research into cell function and regulation. Model I assumes that cell behavior is quite similar to that expected for a watery bag of enzymes and ligands. Model II assumes that three-dimensional order and structure constrain and determine metabolite behavior. A major problem in cell metabolism is determining why essentially all metabolite concentrations are remarkably stable (are homeostatic) over large changes in pathway fluxes—for convenience, this is termed the [s] stability paradox. For muscle cells, ATP and O2 are the most perfectly homeostatic, even though O2 delivery and metabolic rate correlate in a 1:1 fashion. In total, more than 60 metabolites are known to be remarkably homeostatic in differing metabolic states. Several explanations of [s] stability are usually given by traditional model I studies—none of which apply to all enzymes in a pathway, and all of which require diffusion as the means for changing enzyme–substrate encounter rates. In contrast, recent developments in our understanding of intracellular myosin, kinesin, and dyenin motors running on actin and tubulin tracks or cables supply a mechanistic basis for regulated intracellular circulation systems with cytoplasmic streaming rates varying over an approximately 80-fold range (from 1 to >80 μm × sec−1). These new studies raise a model II hypothesis of intracellular perfusion or convection as a primary means for bringing enzymes and substrates together under variable metabolic conditions. In this view, change in intracellular perfusion rates cause change in enzyme–substrate encounter rates and thus change in pathway fluxes with no requirement for large simultaneous changes in substrate concentrations. The ease with which this hypothesis explains the [s] stability paradox is one of its most compelling features.
Resumo:
Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous.
Resumo:
The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.
Resumo:
Erythropoietin (Epo)-responsive anemia is a common and debilitating complication of chronic renal failure and human immunodeficiency virus infection. Current therapy for this condition involves repeated intravenous or subcutaneous injections of recombinant Epo. In this report, we describe the development of a novel muscle-based gene transfer approach that produces long-term expression of physiologically significant levels of Epo in the systemic circulation of mice. We have constructed a plasmid expression vector, pVRmEpo, that contains the murine Epo cDNA under the transcriptional control of the cytomegalovirus immediate early (CMV-IE) promoter, the CMV-IE 5' untranslated region, and intron A. A single intramuscular (i.m.) injection of as little as 10 micrograms of this plasmid into immunocompetent adult mice produced physiologically significant elevations in serum Epo levels and increased hematocrits from preinjection levels of 48 +/- 0.4% to levels of 64 +/- 3.3% 45 days after injection. Hematocrits in these animals remained elevated at greater than 60% for at least 90 days after a single i.m. injection of 10 micrograms of pVRmEpo. We observed a dose-response relationship between the amount of plasmid DNA injected and subsequent elevations in hematocrits. Mice injected once with 300 micrograms of pVRmEpo displayed 5-fold increased serum Epo levels and elevated hematocrits of 79 +/- 3.3% at 45 days after injection. The i.m. injected plasmid DNA remained localized to the site of injection as assayed by the PCR. We conclude that i.m. injection of plasmid DNA represents a viable nonviral gene transfer method for the treatment of acquired and inherited serum protein deficiencies.
Resumo:
We have investigated whether side chain-hydroxylated cholesterol species are important for elimination of cholesterol from the brain. Plasma concentrations of 24-hydroxycholesterol (24-OH-Chol) in the internal jugular vein and the brachial artery in healthy volunteers were consistent with a net flux of this steroid from the brain into the circulation, corresponding to elimination of approximately 4 mg cholesterol during a 24-h period in adults. Results of experiments with rats exposed to 18O2 were also consistent with a flux of 24-OH-Chol from the brain into the circulation. No other oxysterol measured showed a similar behavior as 24-OH-Chol. These results and the finding that the concentration of 24-OH-Chol was 30- to 1500-fold higher in the brain than in any other organ except the adrenals indicate that the major part of 24-OH-Chol present in the circulation originates from the brain. Both the 24-OH-Chol present in the brain and in the circulation were the 24S-stereoisomer. In contrast to other oxysterols, levels of plasma 24-OH-Chol were found to be markedly dependent upon age. The ratio between 24-OH-Chol and cholesterol in plasma was approximately 5 times higher during the first decade of life than during the sixth decade. There was a high correlation between levels of 24-OH-Chol in plasma and cerebrospinal fluid. It is suggested that the flux of 24-OH-Chol from the brain is important for cholesterol homeostasis in this organ.