22 resultados para Stimulus Duration

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cAMP-responsive element binding protein (CREB), a key regulator of gene expression, is activated by phosphorylation on Ser-133. Several different protein kinases possess the capability of driving this phosphorylation, making it a point of potential convergence for multiple intracellular signaling cascades. Previous work in neurons has indicated that physiologic synaptic stimulation recruits a fast calmodulin kinase IV (CaMKIV)-dependent pathway that dominates early signaling to CREB. Here we show in hippocampal neurons that the fast, CaMK-dependent pathway can be followed by a slower pathway that depends on Ras/mitogen-activated protein kinase (MAPK), along with CaMK. This pathway was blocked by dominant-negative Ras and was specifically recruited by depolarizations that produced strong intracellular Ca2+ transients. When both pathways were recruited, phosphorylated CREB (pCREB) formation was overwhelmingly dominated by the CaMK pathway between 0 and 10 min, and by the MAPK pathway at 60 min, whereas the two pathways acted in concert at 30 min. The Ca2+ signals that produced only rapid CaMK signaling to pCREB or both rapid CaMK and slow MAPK signaling deviated significantly for only ≈1 min, yet their differential impact on pCREB extended over a much longer period, between 20 and 60 min and beyond, which is of likely significance for gene expression. The CaMK-dependent MAPK pathway may inform the nucleus about stimulus amplitude. In contrast, the CaMKIV pathway may be well suited to conveying information on the precise timing of localized synaptic stimuli, befitting its greater speed and sensitivity, whereas the previously described calcineurin pathway may carry information about stimulus duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical modeling approach is proposed for use in searching large microarray data sets for genes that have a transcriptional response to a stimulus. The approach is unrestricted with respect to the timing, magnitude or duration of the response, or the overall abundance of the transcript. The statistical model makes an accommodation for systematic heterogeneity in expression levels. Corresponding data analyses provide gene-specific information, and the approach provides a means for evaluating the statistical significance of such information. To illustrate this strategy we have derived a model to depict the profile expected for a periodically transcribed gene and used it to look for budding yeast transcripts that adhere to this profile. Using objective criteria, this method identifies 81% of the known periodic transcripts and 1,088 genes, which show significant periodicity in at least one of the three data sets analyzed. However, only one-quarter of these genes show significant oscillations in at least two data sets and can be classified as periodic with high confidence. The method provides estimates of the mean activation and deactivation times, induced and basal expression levels, and statistical measures of the precision of these estimates for each periodic transcript.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amperometry has been used for real-time electrochemical detection of the quantal release of catecholamines and indolamines from secretory granules in chromaffin and mast cells. Using improved-sensitivity carbon fiber electrodes, we now report the detection of quantal catecholamine release at the surface of somas of neonatal superior cervical ganglion neurons that are studded with axon varicosities containing synaptic vesicles. Local application of a bath solution containing high K+ or black widow spider venom, each of which greatly enhances spontaneous quantal release of transmitter at synapses, evoked barrages of small-amplitude (2-20 pA), short-duration (0.5-2 ms) amperometric quantal "spikes". The median spike charge was calculated as 11.3 fC. This figure corresponds to 3.5 x 10(4) catecholamine molecules per quantum of release, or approximately 1% that evoked by the discharge of the contents of a chromaffin granule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cAMP response element-binding protein (CREB) is an activity-dependent transcription factor that is involved in neural plasticity. The kinetics of CREB phosphorylation have been suggested to be important for gene activation, with sustained phosphorylation being associated with downstream gene expression. If so, the duration of CREB phosphorylation might serve as an indicator for time-sensitive plastic changes in neurons. To screen for regions potentially involved in dopamine-mediated plasticity in the basal ganglia, we used organotypic slice cultures to study the patterns of dopamine- and calcium-mediated CREB phosphorylation in the major subdivisions of the striatum. Different durations of CREB phosphorylation were evoked in the dorsal and ventral striatum by activation of dopamine D1-class receptors. The same D1 stimulus elicited (i) transient phosphorylation (≤15 min) in the matrix of the dorsal striatum; (ii) sustained phosphorylation (≤2 hr) in limbic-related structures including striosomes, the nucleus accumbens, the fundus striati, and the bed nucleus of the stria terminalis; and (iii) prolonged phosphorylation (up to 4 hr or more) in cellular islands in the olfactory tubercle. Elevation of Ca2+ influx by stimulation of L-type Ca2+ channels, NMDA, or KCl induced strong CREB phosphorylation in the dorsal striatum but not in the olfactory tubercle. These findings differentiate the response of CREB to dopamine and calcium signals in different striatal regions and suggest that dopamine-mediated CREB phosphorylation is persistent in limbic-related regions of the neonatal basal ganglia. The downstream effects activated by persistent CREB phosphorylation may include time-sensitive neuroplasticity modulated by dopamine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here that during a permanent cardiac arrest, rodent brain tissue is “physiologically” preserved in situ in a particular quiescent state. This state is characterized by the absence of electrical activity and by a critical period of 5–6 hr during which brain tissue can be reactivated upon restoration of a simple energy (glucose/oxygen) supply. In rat brain slices prepared 1–6 hr after cardiac arrest and maintained in vitro for several hours, cells with normal morphological features, intrinsic membrane properties, and spontaneous synaptic activity were recorded from various brain regions. In addition to functional membrane channels, these neurons expressed mRNA, as revealed by single-cell reverse transcription–PCR, and could synthesize proteins de novo. Slices prepared after longer delays did not recover. In a guinea pig isolated whole-brain preparation that was cannulated and perfused with oxygenated saline 1–2 hr after cardiac arrest, cell activity and functional long-range synaptic connections could be restored although the electroencephalogram remained isoelectric. Perfusion of the isolated brain with the γ-aminobutyric acid A receptor antagonist picrotoxin, however, could induce self-sustained temporal lobe epilepsy. Thus, in rodents, the duration of cardiac arrest compatible with a short-term recovery of neuronal activity is much longer than previously expected. The analysis of the parameters that regulate this duration may bring new insights into the prevention of postischemic damages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In higher plants changes and oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) are central to hormonal physiology, including that of abscisic acid (ABA), which signals conditions of water stress and alters ion channel activities in guard cells of higher-plant leaves. Such changes in [Ca2+]i are thought to encode for cellular responses to different stimuli, but their origins and functions are poorly understood. Because transients and oscillations in membrane voltage also occur in guard cells and are elicited by hormones, including ABA, we suspected a coupling of [Ca2+]i to voltage and its interaction with ABA. We recorded [Ca2+]i by Fura2 fluorescence ratio imaging and photometry while bringing membrane voltage under experimental control with a two-electrode voltage clamp in intact Vicia guard cells. Free-running oscillations between voltages near −50 mV and −200 mV were associated with oscillations in [Ca2+]i, and, under voltage clamp, equivalent membrane hyperpolarizations caused [Ca2+]i to increase, often in excess of 1 μM, from resting values near 100 nM. Image analysis showed that the voltage stimulus evoked a wave of high [Ca2+]i that spread centripetally from the peripheral cytoplasm within 5–10 s and relaxed over 40–60 s thereafter. The [Ca2+]i increases showed a voltage threshold near −120 mV and were sensitive to external Ca2+ concentration. Substituting Mn2+ for Ca2+ to quench Fura2 fluorescence showed that membrane hyperpolarization triggered a divalent influx. ABA affected the voltage threshold for the [Ca2+]i rise, its amplitude, and its duration. In turn, membrane voltage determined the ability of ABA to raise [Ca2+]i. These results demonstrate a capacity for voltage to evoke [Ca2+]i increases, they point to a dual interaction with ABA in triggering and propagating [Ca2+]i increases, and they implicate a role for voltage in “conditioning” [Ca2+]i signals that regulate ion channels for stomatal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant cells can respond qualitatively and quantitatively to a wide range of environmental signals. Ca2+ is used as an intracellular signal for volume regulation in response to external osmotic changes. We show here that the spatiotemporal patterns of hypo-osmotically induced Ca2+ signals vary dramatically with stimulus strength in embryonic cells of the marine alga Fucus. Biphasic or multiphasic Ca2+ signals reflect Ca2+ elevations in distinct cellular domains. These propagate via elemental Ca2+ release in nuclear or peripheral regions that are rich in endoplasmic reticulum. Cell volume regulation specifically requires Ca2+ elevation in apical peripheral regions, whereas an altered cell division rate occurs only in response to stimuli that cause Ca2+ elevation in nuclear regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetoencephalographic responses recorded from auditory cortex evoked by brief and rapidly successive stimuli differed between adults with poor vs. good reading abilities in four important ways. First, the response amplitude evoked by short-duration acoustic stimuli was stronger in the post-stimulus time range of 150–200 ms in poor readers than in normal readers. Second, response amplitude to rapidly successive and brief stimuli that were identical or that differed significantly in frequency were substantially weaker in poor readers compared with controls, for interstimulus intervals of 100 or 200 ms, but not for an interstimulus interval of 500 ms. Third, this neurological deficit closely paralleled subjects’ ability to distinguish between and to reconstruct the order of presentation of those stimulus sequences. Fourth, the average distributed response coherence evoked by rapidly successive stimuli was significantly weaker in the β- and γ-band frequency ranges (20–60 Hz) in poor readers, compared with controls. These results provide direct electrophysiological evidence supporting the hypothesis that reading disabilities are correlated with the abnormal neural representation of brief and rapidly successive sensory inputs, manifested in this study at the entry level of the cortical auditory/aural speech representational system(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe experiments on behaving rats with electrodes implanted on the cornea, in the optic chiasm, and on the visual cortex; in addition, two red light-emitting diodes (LED) are permanently attached to the skull over the left eye. Recordings timelocked to the LED flashes reveal both the local events at each electrode site and the orderly transfer of visual information from retina to cortex. The major finding is that every stimulus, regardless of its luminance, duration, or the state of retinal light adaptation, elicits an optic nerve volley with a latency of about 10 ms and a duration of about 300 ms. This phenomenon has not been reported previously, so far as we are aware. We conclude that the retina, which originates from the forebrain of the developing embryo, behaves like a typical brain structure: it translates, within a few hundred milliseconds, the chemical information in each pattern of bleached photoreceptors into a corresponding pattern of ganglion cell neuronal information that leaves via the optic nerve. The attributes of each rat ganglion cell appear to include whether the retinal neuropile calls on it to leave after a stimulus and, if so when, within a 300-ms poststimulus epoch. The resulting retinal analysis of the scene, on arrival at the cortical level, is presumed to participate importantly in the creation of visual perceptual experiences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 μm below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of ≈70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recordings were obtained from the visual system of rats as they cycled normally between waking (W), slow-wave sleep (SWS), and rapid eye movement (REM) sleep. Responses to flashes delivered by a light-emitting diode attached permanently to the skull were recorded through electrodes implanted on the cornea, in the chiasm, and on the cortex. The chiasm response reveals the temporal order in which the activated ganglion cell population exits the eyeball; as reported, this triphasic event is invariably short in latency (5–10 ms) and around 300 ms in duration, called the histogram. Here we describe the differences in the histograms recorded during W, SWS, and REM. SWS histograms are always larger than W histograms, and an REM histogram can resemble either. In other words, the optic nerve response to a given stimulus is labile; its configuration depends on whether the rat is asleep or awake. We link this physiological information with the anatomical fact that the brain dorsal raphe region, which is known to have a sleep regulatory role, sends fibers to the rat retina and receives fibers from it. At the cortical electrode, the visual cortical response amplitudes also vary, being largest during SWS. This well known phenomenon often is explained by changes taking place at the thalamic level. However, in the rat, the labile cortical response covaries with the labile optic nerve response, which suggests the cortical response enhancement during SWS is determined more by what happens in the retina than by what happens in the thalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual classification is the way we relate to different images in our environment as if they were the same, while relating differently to other collections of stimuli (e.g., human vs. animal faces). It is still not clear, however, how the brain forms such classes, especially when introduced with new or changing environments. To isolate a perception-based mechanism underlying class representation, we studied unsupervised classification of an incoming stream of simple images. Classification patterns were clearly affected by stimulus frequency distribution, although subjects were unaware of this distribution. There was a common bias to locate class centers near the most frequent stimuli and their boundaries near the least frequent stimuli. Responses were also faster for more frequent stimuli. Using a minimal, biologically based neural-network model, we demonstrate that a simple, self-organizing representation mechanism based on overlapping tuning curves and slow Hebbian learning suffices to ensure classification. Combined behavioral and theoretical results predict large tuning overlap, implicating posterior infero-temporal cortex as a possible site of classification.