8 resultados para Steven and Dorothea Green Critics Lecture Series

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) are unable to synthesize the linear tetrapyrrole chromophore of phytochrome, resulting in plants with a yellow-green phenotype. To understand the basis of this phenotype, we investigated the consequences of the au and yg-2 mutations on tetrapyrrole metabolism. Dark-grown seedlings of both mutants have reduced levels of protochlorophyllide (Pchlide) due to an inhibition of Pchlide synthesis. Feeding experiments with the tetrapyrrole precursor 5-aminolevulinic acid (ALA) demonstrate that the pathway between ALA and Pchlide is intact in au and yg-2 and suggest that the reduction in Pchlide is a result of the inhibition of ALA synthesis. This inhibition was independent of any deficiency in seed phytochrome, and experiments using an iron chelator to block heme synthesis demonstrated that both mutations inhibited the degradation of the physiologically active heme pool, suggesting that the reduction in Pchlide synthesis is a consequence of feedback inhibition by heme. We discuss the significance of these results in understanding the chlorophyll-deficient phenotype of the au and yg-2 mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A "green beard" refers to a gene, or group of genes, that is able to recognize itself in other individuals and direct benefits to these individuals. Green-beard effects have been dismissed as implausible by authors who have implicitly assumed sophisticated mechanisms of perception and complex behavioral responses. However, many simple mechanisms for genes to "recognize" themselves exist at the maternal-fetal interface of viviparous organisms. Homophilic cell adhesion molecules, for example, are able to interact with copies of themselves on other cells. Thus, the necessary components of a green-beard effect -- feature, recognition, and response -- can be different aspects of the phenotype of a single gene. Other green-beard effects could involve coalitions of genes at closely linked loci. In fact, any form of epistasis between a locus expressed in a mother and a closely linked locus expressed in the fetus has the property of "self-recognition." Green-beard effects have many formal similarities to systems of meiotic drive and, like them, can be a source of intragenomic conflict.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms play an important role in the biogeochemistry of the ocean surface layer, but spatial and temporal structures in the distributions of specific bacterioplankton species are largely unexplored, with the exceptions of those organisms that can be detected by either autofluorescence or culture methods. The use of rRNA genes as genetic markers provides a tool by which patterns in the growth, distribution, and activity of abundant bacterioplankton species can be studied regardless of the ease with which they can be cultured. Here we report an unusual cluster of related 16S rRNA genes (SAR202, SAR263, SAR279, SAR287, SAR293, SAR307) cloned from seawater collected at 250 m in the Sargasso Sea in August 1991, when the water column was highly stratified and the deep chlorophyll maximum was located at a depth of 120 m. Phylogenetic analysis and an unusual 15-bp deletion confirmed that the genes were related to the Green Non-Sulfur phylum of the domain Bacteria. This is the first evidence that representatives of this phylum occur in the open ocean. Oligonucleotide probes were used to examine the distribution of the SAR202 gene cluster in vertical profiles (0-250 m) from the Atlantic and Pacific Oceans, and in discrete (monthly) time series (O and 200 m) (over 30 consecutive months in the Western Sargasso Sea. The data provide robust statistical support for the conclusion that the SAR202 gene cluster is proportionately most abundant at the lower boundary of the deep chlorophyll maximum (P = 2.33 x 10(-5)). These results suggest that previously unsuspected stratification of microbial populations may be a significant factor in the ecology of the ocean surface layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examination of the structural basis for antiviral activity, oral pharmacokinetics, and hepatic metabolism among a series of symmetry-based inhibitors of the human immunodeficiency virus (HIV) protease led to the discovery of ABT-538, a promising experimental drug for the therapeutic intervention in acquired immunodeficiency syndrome (AIDS). ABT-538 exhibited potent in vitro activity against laboratory and clinical strains of HIV-1 [50% effective concentration (EC50) = 0.022-0.13 microM] and HIV-2 (EC50 = 0.16 microM). Following a single 10-mg/kg oral dose, plasma concentrations in rat, dog, and monkey exceeded the in vitro antiviral EC50 for > 12 h. In human trials, a single 400-mg dose of ABT-538 displayed a prolonged absorption profile and achieved a peak plasma concentration in excess of 5 micrograms/ml. These findings demonstrate that high oral bioavailability can be achieved in humans with peptidomimetic inhibitors of HIV protease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the functional activity of the diphtheria toxin repressor DtxR is controlled by iron, which serves as an essential cofactor necessary for activation of target DNA binding by this regulatory element. In this communication, we describe the isolation and characterization of a unique series of DtxR mutants that are constitutively active and repress the expression of β-galactosidase from a diphtheria tox promoter/operator–lacZ transcriptional fusion, even in the absence of iron. These self-activating mutants of DtxR (SAD) were isolated through the use of a positive selection system for the cloning of functional dtxR alleles and target DNA operator sites. Of the four independently isolated SAD mutants that were characterized, two (SAD2 and SAD11) were found to carry a single missense mutation (E175K) in their respective C-terminal SH3-like domains. In contrast, the mutant allele encoding SAD3 was found to carry a total of six missense mutations distributed throughout the N- and C-terminal domains of the repressor. Partial diploid analysis of strains carrying both native dtxR and alleles encoding either SAD2 or SAD3 demonstrate that these iron-independent mutants possess a positive dominant phenotype in the regulation of β-galactosidase expression from a diphtheria tox promoter/operator–lacZ transcriptional fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional silencing of genes transferred into hematopoietic stem cells poses one of the most significant challenges to the success of gene therapy. If the transferred gene is not completely silenced, a progressive decline in gene expression as the mice age often is encountered. These phenomena were observed to various degrees in mouse transplant experiments using retroviral vectors containing a human β-globin gene, even when cis-linked to locus control region derivatives. Here, we have investigated whether ex vivo preselection of retrovirally transduced stem cells on the basis of expression of the green fluorescent protein driven by the CpG island phosphoglycerate kinase promoter can ensure subsequent long-term expression of a cis-linked β-globin gene in the erythroid lineage of transplanted mice. We observed that 100% of mice (n = 7) engrafted with preselected cells concurrently expressed human β-globin and the green fluorescent protein in 20–95% of their RBC for up to 9.5 mo posttransplantation, the longest time point assessed. This expression pattern was successfully transferred to secondary transplant recipients. In the presence of β-locus control region hypersensitive site 2 alone, human β-globin mRNA expression levels ranged from 0.15% to 20% with human β-globin chains detected by HPLC. Neither the proportion of positive blood cells nor the average expression levels declined with time in transplanted recipients. Although suboptimal expression levels and heterocellular position effects persisted, in vivo stem cell gene silencing and age-dependent extinction of expression were avoided. These findings support the further investigation of this type of vector for the gene therapy of human hemoglobinopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rho small GTP-binding proteins are versatile, conserved molecular switches in eukaryotic signal transduction. Plants contain a unique subfamily of Rho-GTPases called Rop (Rho-related GTPases from plants). Our previous studies involving injection of antibodies indicated that the pea Rop GTPase Rop1Ps is critical for pollen tube growth. In this study we show that overexpression of an apparent Arabidopsis ortholog of Rop1Ps, Rop1At, induces isotropic cell growth in fission yeast (Schizosaccharomyces pombe) and that green fluorescence protein-tagged Rop1At displays polar localization to the site of growth in yeast. We found that Rop1At and two other Arabidopsis Rops, Rop3At and Rop5At, are all expressed in mature pollen. All three pollen Rops fall into the same subgroup as Rop1Ps and diverge from those Rops that are not expressed in mature pollen, suggesting a coupling of the structural conservation of Rop GTPases to their gene expression in pollen. However, pollen-specific transcript accumulation for Rop1At is much higher than that for Rop3At and Rop5At. Furthermore, Rop1At is specifically expressed in anthers, whereas Rop3At and Rop5At are also expressed in vegetative tissues. In transgenic plants containing the Rop1At promoter:GUS fusion gene, GUS is specifically expressed in mature pollen and pollen tubes. We propose that Rop1At may play a predominant role in the regulation of polarized cell growth in pollen, whereas its close relatives Rop3At and Rop5At may be functionally redundant to Rop1At in pollen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toil by photosynthesizing cyanobacteria and blue-green algae of nearly three billion years appeared to have finally resulted in the sufficient accumulation of molecular oxygen. So, the stage was set for the emergence, at the ocean bottom, of diverse animals that were consumers of molecular oxygen. It now appears that this Cambrian explosion, during which nearly all the extant animal phyla have emerged, was of an astonishingly short duration, lasting only 6-10 million years. Inasmuch as only a 1% DNA base sequence change is expected in 10 million years under the standard spontaneous mutation rate, I propose that all those diverse animals of the early Cambrian period, some 550 million years ago, were endowed with nearly identical genomes, with differential usage of the same set of genes accounting for the extreme diversities of body forms. Some of the more pertinent genes that are thought to be included in the Cambrian pananimalia genome are as follows. (i) A gene for lysyloxidase that, in the presence of molecular oxygen, crosslinked collagen triple helices to produce ligaments and tendons, thus contributing to the stout bodies of the Cambrian animals. (ii) Genes for hemoglobin; these internal transporters of molecular oxygen are today seen sporadically in members of diverse animal phyla. (iii) The Pax-6 gene for eye formation; the eyes of a ribbon worm to a human are organized by this gene. In animals without eyes, the same gene organizes other sensory systems and organs. (iv) A series of Hox genes for the anterior-posterior (cranio-caudal) body plans: these genes are also present in all phyla of the kingdom Animalia.