7 resultados para Stamp collecting

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently cloned an inward-rectifying K channel (Kir) cDNA, CCD-IRK3 (mKir 2.3), from a cortical collecting duct (CCD) cell line. Although this recombinant channel shares many functional properties with the “small-conductance” basolateral membrane Kir channel in the CCD, its precise subcellular localization has been difficult to elucidate by conventional immunocytochemistry. To circumvent this problem, we studied the targeting of several different epitope-tagged CCD-IRK3 in a polarized renal epithelial cell line. Either the 11-amino acid span of the vesicular stomatitis virus (VSV) G glycoprotein (P5D4 epitope) or a 6-amino acid epitope of the bovine papilloma virus capsid protein (AU1) was genetically engineered on the extreme N terminus of CCD-IRK3. As determined by patch-clamp and two-microelectrode voltage-clamp analyses in Xenopus oocytes, neither tag affected channel function; no differences in cation selectivity, barium block, single channel conductance, or open probability could be distinguished between the wild-type and the tagged constructs. MDCK cells were transfected with tagged CCD-IRK3, and several stable clonal cell lines were generated by neomycin-resistance selection. Immunoprecipitation studies with anti-P5D4 or anti-AU1 antibodies readily detected the predicted-size 50-kDa protein in the transfected cells lines but not in wild-type or vector-only (PcB6) transfected MDCK cells. As visualized by indirect immunofluorescence and confocal microscopy, both the tagged CCD-IRK3 forms were exclusively detected on the basolateral membrane. To assure that the VSV G tag was not responsible for the targeting, the P5D4 epitope modified by a site-directed mutagenesis (Y2F) to remove a potential basolateral targeting signal contained in this tag. VSV(Y2F) was also detected exclusively on the basolateral membrane, confirming bona fide IRK3 basolateral expression. These observations, with our functional studies, suggest that CCD-IRK3 may encode the small-conductance CCD basolateral K channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested whether severe congestive heart failure (CHF), a condition associated with excess free-water retention, is accompanied by altered regulation of the vasopressin-regulated water channel, aquaporin-2 (AQP2), in the renal collecting duct. CHF was induced by left coronary artery ligation. Compared with sham-operated animals, rats with CHF had severe heart failure with elevated left ventricular end-diastolic pressures (LVEDP): 26.9 ± 3.4 vs. 4.1 ± 0.3 mmHg, and reduced plasma sodium concentrations (142.2 ± 1.6 vs. 149.1 ± 1.1 mEq/liter). Quantitative immunoblotting of total kidney membrane fractions revealed a significant increase in AQP2 expression in animals with CHF (267 ± 53%, n = 12) relative to sham-operated controls (100 ± 13%, n = 14). In contrast, immunoblotting demonstrated a lack of an increase in expression of AQP1 and AQP3 water channel expression, indicating that the effect on AQP2 was selective. Furthermore, postinfarction animals without LVEDP elevation or plasma Na reduction showed no increase in AQP2 expression (121 ± 28% of sham levels, n = 6). Immunocytochemistry and immunoelectron microscopy demonstrated very abundant labeling of the apical plasma membrane and relatively little labeling of intracellular vesicles in collecting duct cells from rats with severe CHF, consistent with enhanced trafficking of AQP2 to the apical plasma membrane. The selective increase in AQP2 expression and enhanced plasma membrane targeting provide an explanation for the development of water retention and hyponatremia in severe CHF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount of genomic and proteomic data that is entered each day into databases and the experimental literature is outstripping the ability of experimental scientists to keep pace. While generic databases derived from automated curation efforts are useful, most biological scientists tend to focus on a class or family of molecules and their biological impact. Consequently, there is a need for molecular class-specific or other specialized databases. Such databases collect and organize data around a single topic or class of molecules. If curated well, such systems are extremely useful as they allow experimental scientists to obtain a large portion of the available data most relevant to their needs from a single source. We are involved in the development of two such databases with substantial pharmacological relevance. These are the GPCRDB and NucleaRDB information systems, which collect and disseminate data related to G protein-coupled receptors and intra-nuclear hormone receptors, respectively. The GPCRDB was a pilot project aimed at building a generic molecular class-specific database capable of dealing with highly heterogeneous data. A first version of the GPCRDB project has been completed and it is routinely used by thousands of scientists. The NucleaRDB was started recently as an application of the concept for the generalization of this technology. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm/ and the NucleaRDB at http://www.receptors.org/NR/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCDcl4) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCDcl4 cell line either by Northern blot hybridization or reverse transcription–PCR. The hepatocyte nuclear transcription factor HNF-3-α (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic AMP (cAMP) stimulates the transport of Na+ and Na,K-ATPase activity in the renal cortical collecting duct (CCD). The aim of this study was to investigate the mechanism whereby cAMP stimulates the Na,K-ATPase activity in microdissected rat CCDs and cultured mouse mpkCCDc14 collecting duct cells. db-cAMP (10−3 M) stimulated by 2-fold the activity of Na,K-ATPase from rat CCDs as well as the ouabain-sensitive component of 86Rb+ uptake by rat CCDs (1.7-fold) and cultured mouse CCD cells (1.5-fold). Pretreatment of rat CCDs with saponin increased the total Na,K-ATPase activity without further stimulation by db-cAMP. Western blotting performed after a biotinylation procedure revealed that db-cAMP increased the amount of Na,K-ATPase at the cell surface in both intact rat CCDs (1.7-fold) and cultured cells (1.3-fold), and that this increase was not related to changes in Na,K-ATPase internalization. Brefeldin A and low temperature (20°C) prevented both the db-cAMP-dependent increase in cell surface expression and activity of Na,K-ATPase in both intact rat CCDs and cultured cells. Pretreatment with the intracellular Ca2+ chelator bis-(o-aminophenoxy)-N,N,N′,N′-tetraacetic acid also blunted the increment in cell surface expression and activity of Na,K-ATPase caused by db-cAMP. In conclusion, these results strongly suggest that the cAMP-dependent stimulation of Na,K-ATPase activity in CCD results from the translocation of active pump units from an intracellular compartment to the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of cell shrinkage on whole-cell currents of M-1 mouse cortical collecting duct cells. Addition of 100 mM sucrose to an isotonic NaCl bath solution induced cell shrinkage and increased whole-cell currents within 5-10 min by approximately 12-fold. The effect was reversible upon return to isotonic solution and could also be elicited by adding 100 mM urea or 50 mM NaCl. Replacement of bath Na+ by K+, Cs+, Li+, or Rb+ did not significantly affect the stimulated inward current, but replacement by N-methyl-D-glucamine reduced it by 88.1 +/- 1.3% (n = 34); this demonstrates that hypertonicity activates a nonselective alkali cation conductance. The activation was independent of extra- and intracellular Ca2+, but 1 or 10 mM ATP in the pipette suppressed it in a concentration-dependent manner, indicating that intracellular ATP levels may modulate the degree of channel activation. Flufenamic acid (0.1 mM) and gadolinium (0.1 mM) inhibited the stimulated current by 68.7 +/- 5.9% (n = 9) and 32.4 +/- 11.7% (n = 6), respectively, whereas 0.1 mM amiloride had no significant effect. During the early phase of hypertonic stimulation single-channel transitions could be detected in whole-cell current recordings, and a gradual activation of 30 and more individual channels with a single-channel conductance of 26.7 +/- 0.4 pS (n = 29) could be resolved. Thus, we identified the nonselective cation channel underlying the shrinkage-induced whole-cell conductance that may play a role in volume regulation.