3 resultados para Spin-echo
em National Center for Biotechnology Information - NCBI
Resumo:
Imaging of H217O has a number of important applications. Mapping the distribution of H217O produced by oxidative metabolism of 17O-enriched oxygen gas may lead to a new method of metabolic functional imaging; regional cerebral blood flow also can be measured by measuring the H217O distribution after the injection of 17O-enriched physiological saline solution. Previous studies have proposed a method for indirect detection of 17O. The method is based on the shortening of the proton T2 in H217O solutions, caused by the residual 17O-1H scalar coupling and transferred to the bulk water via fast chemical exchange. It has been shown that the proton T2 of H217O solutions can be restored to that of H216O by irradiating the resonance frequency of the 17O nucleus. The indirect 17O image thus is obtained by taking the difference between two T2-weighted spin-echo images: one acquired after irradiation of the 17O resonance and one acquired without irradiation. It also has been established that, at relatively low concentrations of H217O, the indirect method yields an image that quantitatively reflects the H217O distribution in the sample. The method is referred to as PRIMO (proton imaging of oxygen). In this work, we show in vivo proton images of the H217O distribution in a rat brain after an i.v. injection of H217O-enriched physiological saline solution. Implementing the indirect detection method in an echo-planar imaging sequence enabled obtaining H217O images with good spatial and temporal resolution of few seconds.
Resumo:
The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.
Resumo:
Electron spin echo electron-nuclear double resonance (ESE-ENDOR) experiments performed on a broad radical electron paramagnetic resonance (EPR) signal observed in photosystem II particles depleted of Ca2+ indicate that this signal arises from the redox-active tyrosine YZ. The tyrosine EPR signal width is increased relative to that observed in a manganese-depleted preparation due to a magnetic interaction between the photosystem II manganese cluster and the tyrosine radical. The manganese cluster is located asymmetrically with respect to the symmetry-related tyrosines YZ and YD. The distance between the YZ tyrosine and the manganese cluster is estimated to be approximately 4.5 A. Due to this close proximity of the Mn cluster and the redox-active tyrosine YZ, we propose that this tyrosine abstracts protons from substrate water bound to the Mn cluster.