10 resultados para Spin content of the nucleon
em National Center for Biotechnology Information - NCBI
Resumo:
The primary electron donor in bacterial reaction centers is a dimer of bacteriochlorophyll a molecules, labeled L or M based on their proximity to the symmetry-related protein subunits. The electronic structure of the bacteriochlorophyll dimer was probed by introducing small systematic variations in the bacteriochlorophyll–protein interactions by a series of site-directed mutations that replaced residue Leu M160 with histidine, tyrosine, glutamic acid, glutamine, aspartic acid, asparagine, lysine, and serine. The midpoint potentials for oxidation of the dimer in the mutants showed an almost continuous increase up to ≈60 mV compared with wild type. The spin density distribution of the unpaired electron in the cation radical state of the dimer was determined by electron–nuclear–nuclear triple resonance spectroscopy in solution. The ratio of the spin density on the L side of the dimer to the M side varied from ≈2:1 to ≈5:1 in the mutants compared with ≈2:1 for wild type. The correlation between the midpoint potential and spin density distribution was described using a simple molecular orbital model, in which the major effect of the mutations is assumed to be a change in the energy of the M half of the dimer, providing estimates for the coupling and energy levels of the orbitals in the dimer. These results demonstrate that the midpoint potential can be fine-tuned by electrostatic interactions with amino acids near the dimer and show that the properties of the electronic structure of a donor or acceptor in a protein complex can be directly related to functional properties such as the oxidation–reduction midpoint potential.
Resumo:
Lysine is the most limiting essential amino acid in cereals, and for many years plant breeders have attempted to increase its concentration to improve the nutritional quality of these grains. The opaque2 mutation in maize doubles the lysine content in the endosperm, but the mechanism by which this occurs is unknown. We show that elongation factor 1 alpha (EF-1 alpha) is overexpressed in opaque2 endosperm compared with its normal counterpart and that there is a highly significant correlation between EF-1 alpha concentration and the total lysine content of the endosperm. This relationship is also true for two other cereals, sorghum and barley. It appears that genetic selection for genotypes with a high concentration of EF-1 alpha can significantly improve the nutritional quality of maize and other cereals.
Resumo:
In normal rats and mice, immunostaining with specific antibodies revealed that nuclei of most prostatic epithelial cells harbor estrogen receptor β (ERβ). In rat ventral prostate, 530- and 549-aa isoforms of the receptor were identified. These sediment in the 4S region of low-salt sucrose gradients, indicating that prostatic ERβ does not contain the same protein chaperones that are associated with ERα. Estradiol (E2) binding and ERβ immunoreactivity coincide on the gradient, with no indication of ERα. In prostates from mice in which the ERβ gene has been inactivated (BERKO), androgen receptor (AR) levels are elevated, and the tissue contains multiple hyperplastic foci. Most epithelial cells express the proliferation antigen Ki-67. In contrast, prostatic epithelium from wild-type littermates is single layered with no hyperplasia, and very few cells express Ki-67. Rat ventral prostate contains an estrogenic component, which comigrates on HPLC with the testosterone metabolite 5α-androstane-3β,17β-diol (3βAdiol). This compound, which competes with E2 for binding to ERβ and elicits an estrogenic response in the aorta but not in the pituitary, decreases the AR content in prostates of wild-type mice but does not affect the elevated levels seen in ERβ knockout (BERKO) mice. Thus ERβ, probably as a complex with 3βAdiol, is involved in regulating the AR content of the rodent prostate and in restraining epithelial growth. These findings suggest that ligands specific for ERβ may be useful in the prevention and/or clinical management of prostatic hyperplasia and neoplasia.
Resumo:
The crystal structure at 2.0-Å resolution of an 81-residue N-terminal fragment of muscle α-tropomyosin reveals a parallel two-stranded α-helical coiled-coil structure with a remarkable core. The high alanine content of the molecule is clustered into short regions where the local 2-fold symmetry is broken by a small (≈1.2-Å) axial staggering of the helices. The joining of these regions with neighboring segments, where the helices are in axial register, gives rise to specific bends in the molecular axis. We observe such bends to be widely distributed in two-stranded α-helical coiled-coil proteins. This asymmetric design in a dimer of identical (or highly similar) sequences allows the tropomyosin molecule to adopt multiple bent conformations. The seven alanine clusters in the core of the complete molecule (which spans seven monomers of the actin helix) promote the semiflexible winding of the tropomyosin filament necessary for its regulatory role in muscle contraction.
Resumo:
Mean nuclear 2C DNA content (C equaling haploid DNA per nucleus) of the first leaf of the sunflower, Helianthus annuus L., is influenced by the quality and the quantity of light. Seedlings of two inbred lines, RHA 299 and RHA 271 were germinated and grown in controlled environmental conditions. Lighting was adjusted to provide different combinations of photon flux densities and red to far red (R:FR) ratios. At R:FR = 5.8 and photon flux densities of 170 mumol.m-2.s-1, 200 mumol.m-2.s-1, and 230 mumol.m-2.s-1, DNA content remained high and relatively constant (x = 6.97 pg for RHA 271 and x = 7.32 pg for RHA 299). When the photon flux density range (R:FR = 5.8) was elevated to 350 mumol.m-2.s-1, 410 mumol.m-2.s-1, and 470 mumol.m-2.s-1, mean DNA content was reduced to 6.23 pg (RHA 271) and 6.46 pg (RHA 299). At R:FR = 1.5, mean DNA content was consistently high (7.2-7.9 pg) only at the lowest photon flux density of 170 mumol.m-2.s-1. Significant decreases in DNA content (< or = 12%) were observed at photon flux densities of 200 mumol.m-2.s-1 and 230 mumol.m-2.s-1. At the higher photon flux densities (350 mumol.m-2.s-1, 410 mumol.m-2.s-1, and 470 mumol.m-2.s-1) and R:RF = 1.5, the plants had extremely low DNA contents (mean x = 3.36 pg for RHA 271 and 3.41 pg for RHA 299) and high between-plant variance. The instability of DNA content, particularly for plants grown under light that is far red rich, suggests that phytochromes may be involved in regulating DNA content of the sunflower.
Resumo:
The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain.
Resumo:
We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.
Resumo:
The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH2-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.
Resumo:
Although the occurrence of intracellular glasses in seeds and pollen has been established, physical properties such as rotational correlation times and viscosity have not been studied extensively. Using electron paramagnetic resonance spectroscopy, we examined changes in the molecular mobility of the hydrophilic nitroxide spin probe 3-carboxy-proxyl during melting of intracellular glasses in axes of pea (Pisum sativum L.) seeds and cattail (Typha latifolia L.) pollen. The rotational correlation time of the spin probe in intracellular glasses of both organisms was approximately 10−3 s. Using the distance between the outer extrema of the electron paramagnetic resonance spectrum (2Azz) as a measure of molecular mobility, we found a sharp increase in mobility at a definite temperature during heating. This temperature increased with decreasing water content of the samples. Differential scanning calorimetry data on these samples indicated that this sharp increase corresponded to melting of the glassy matrix. Molecular mobility was found to be inversely correlated with storage stability. With decreasing water content, the molecular mobility reached a minimum, and increased again at very low water content. Minimum mobility and maximum storage stability occurred at a similar water content. This correlation suggests that storage stability might be at least partially controlled by molecular mobility. At low temperatures, when storage longevity cannot be determined on a realistic time scale, 2Azz measurements can provide an estimate of the optimum storage conditions.
Resumo:
An EPR "spectroscopic ruler" was developed using a series of alpha-helical polypeptides, each modified with two nitroxide spin labels. The EPR line broadening due to electron-electron dipolar interactions in the frozen state was determined using the Fourier deconvolution method. These dipolar spectra were then used to estimate the distances between the two nitroxides separated by 8-25 A. Results agreed well with a simple alpha-helical model. The standard deviation from the model system was 0.9 A in the range of 8-25 A. This technique is applicable to complex systems such as membrane receptors and channels, which are difficult to access with high-resolution NMR or x-ray crystallography, and is expected to be particularly useful for systems for which optical methods are hampered by the presence of light-interfering membranes or chromophores.