2 resultados para Sphaenorhynchus caramaschii sp. nov.
em National Center for Biotechnology Information - NCBI
Resumo:
Archaea, one of the three major domains of extant life, was thought to comprise predominantly microorganisms that inhabit extreme environments, inhospitable to most Eucarya and Bacteria. However, molecular phylogenetic surveys of native microbial assemblages are beginning to indicate that the evolutionary and physiological diversity of Archaea is far greater than previously supposed. We report here the discovery and preliminary characterization of a marine archaeon that inhabits the tissues of a temperate water sponge. The association was specific, with a single crenarchaeal phylotype inhabiting a single sponge host species. To our knowledge, this partnership represents the first described symbiosis involving Crenarchaeota. The symbiotic archaeon grows well at temperatures of 10 degrees C, over 60 degrees C below the growth temperature optimum of any cultivated species of Crenarchaeota. Archaea have been generally characterized as microorganisms that inhabit relatively circumscribed niches, largely high-temperature anaerobic environments. In contrast, data from molecular phylogenetic surveys, including this report, suggest that some crenarchaeotes have diversified considerably and are found in a wide variety of lifestyles and habitats. We present here the identification and initial description of Cenarchaeum symbiosum gen. nov., sp. nov., a symbiotic archaeon closely related to other nonthermophilic crenarchaeotes that inhabit diverse marine and terrestrial environments.
Resumo:
Widespread species- and genus-level extinctions of mammals in North America and Europe occurred during the last deglaciation [16,000–9,000 yr B.P. (by 14C)], a period of rapid and often abrupt climatic and vegetational change. These extinctions are variously ascribed to environmental change and overkill by human hunters. By contrast, plant extinctions since the Middle Pleistocene are undocumented, suggesting that plant species have been able to respond to environmental changes of the past several glacial/interglacial cycles by migration. We provide evidence from morphological studies of fossil cones and anatomical studies of fossil needles that a now-extinct species of spruce (Picea critchfieldii sp. nov.) was widespread in eastern North America during the Last Glacial Maximum. P. critchfieldii was dominant in vegetation of the Lower Mississippi Valley, and extended at least as far east as western Georgia. P. critchfieldii disappeared during the last deglaciation, and its extinction is not directly attributable to human activities. Similarly widespread plant species may be at risk of extinction in the face of future climate change.