11 resultados para Speech emotion recognition

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper introduces the session on advanced speech recognition technology. The two papers comprising this session argue that current technology yields a performance that is only an order of magnitude in error rate away from human performance and that incremental improvements will bring us to that desired level. I argue that, to the contrary, present performance is far removed from human performance and a revolution in our thinking is required to achieve the goal. It is further asserted that to bring about the revolution more effort should be expended on basic research and less on trying to prematurely commercialize a deficient technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past decade, tremendous advances in the state of the art of automatic speech recognition by machine have taken place. A reduction in the word error rate by more than a factor of 5 and an increase in recognition speeds by several orders of magnitude (brought about by a combination of faster recognition search algorithms and more powerful computers), have combined to make high-accuracy, speaker-independent, continuous speech recognition for large vocabularies possible in real time, on off-the-shelf workstations, without the aid of special hardware. These advances promise to make speech recognition technology readily available to the general public. This paper focuses on the speech recognition advances made through better speech modeling techniques, chiefly through more accurate mathematical modeling of speech sounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Speech recognition involves three processes: extraction of acoustic indices from the speech signal, estimation of the probability that the observed index string was caused by a hypothesized utterance segment, and determination of the recognized utterance via a search among hypothesized alternatives. This paper is not concerned with the first process. Estimation of the probability of an index string involves a model of index production by any given utterance segment (e.g., a word). Hidden Markov models (HMMs) are used for this purpose [Makhoul, J. & Schwartz, R. (1995) Proc. Natl. Acad. Sci. USA 92, 9956-9963]. Their parameters are state transition probabilities and output probability distributions associated with the transitions. The Baum algorithm that obtains the values of these parameters from speech data via their successive reestimation will be described in this paper. The recognizer wishes to find the most probable utterance that could have caused the observed acoustic index string. That probability is the product of two factors: the probability that the utterance will produce the string and the probability that the speaker will wish to produce the utterance (the language model probability). Even if the vocabulary size is moderate, it is impossible to search for the utterance exhaustively. One practical algorithm is described [Viterbi, A. J. (1967) IEEE Trans. Inf. Theory IT-13, 260-267] that, given the index string, has a high likelihood of finding the most probable utterance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper predicts speech synthesis, speech recognition, and speaker recognition technology for the year 2001, and it describes the most important research problems to be solved in order to arrive at these ultimate synthesis and recognition systems. The problems for speech synthesis include natural and intelligible voice production, prosody control based on meaning, capability of controlling synthesized voice quality and choosing individual speaking style, multilingual and multidialectal synthesis, choice of application-oriented speaking styles, capability of adding emotion, and synthesis from concepts. The problems for speech recognition include robust recognition against speech variations, adaptation/normalization to variations due to environmental conditions and speakers, automatic knowledge acquisition for acoustic and linguistic modeling, spontaneous speech recognition, naturalness and ease of human-machine interaction, and recognition of emotion. The problems for speaker recognition are similar to those for speech recognition. The research topics related to all these techniques include the use of articulatory and perceptual constraints and evaluation methods for measuring the quality of technology and systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In behavior reminiscent of the responsiveness of human infants to speech, young songbirds innately recognize and prefer to learn the songs of their own species. The acoustic and physiological bases for innate recognition were investigated in fledgling white-crowned sparrows lacking song experience. A behavioral test revealed that the complete conspecific song was not essential for innate recognition: songs composed of single white-crowned sparrow phrases and songs played in reverse elicited vocal responses as strongly as did normal song. In all cases, these responses surpassed those to other species’ songs. Although auditory neurons in the song nucleus HVc and the underlying neostriatum of fledglings did not prefer conspecific song over foreign song, some neurons responded strongly to particular phrase types characteristic of white-crowned sparrows and, thus, could contribute to innate song recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer speech synthesis has reached a high level of performance, with increasingly sophisticated models of linguistic structure, low error rates in text analysis, and high intelligibility in synthesis from phonemic input. Mass market applications are beginning to appear. However, the results are still not good enough for the ubiquitous application that such technology will eventually have. A number of alternative directions of current research aim at the ultimate goal of fully natural synthetic speech. One especially promising trend is the systematic optimization of large synthesis systems with respect to formal criteria of evaluation. Speech recognition has progressed rapidly in the past decade through such approaches, and it seems likely that their application in synthesis will produce similar improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of speech recognition with natural language understanding raises issues of how to adapt natural language processing to the characteristics of spoken language; how to cope with errorful recognition output, including the use of natural language information to reduce recognition errors; and how to use information from the speech signal, beyond just the sequence of words, as an aid to understanding. This paper reviews current research addressing these questions in the Spoken Language Program sponsored by the Advanced Research Projects Agency (ARPA). I begin by reviewing some of the ways that spontaneous spoken language differs from standard written language and discuss methods of coping with the difficulties of spontaneous speech. I then look at how systems cope with errors in speech recognition and at attempts to use natural language information to reduce recognition errors. Finally, I discuss how prosodic information in the speech signal might be used to improve understanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speech interface technology, which includes automatic speech recognition, synthetic speech, and natural language processing, is beginning to have a significant impact on business and personal computer use. Today, powerful and inexpensive microprocessors and improved algorithms are driving commercial applications in computer command, consumer, data entry, speech-to-text, telephone, and voice verification. Robust speaker-independent recognition systems for command and navigation in personal computers are now available; telephone-based transaction and database inquiry systems using both speech synthesis and recognition are coming into use. Large-vocabulary speech interface systems for document creation and read-aloud proofing are expanding beyond niche markets. Today's applications represent a small preview of a rich future for speech interface technology that will eventually replace keyboards with microphones and loud-speakers to give easy accessibility to increasingly intelligent machines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research in speech recognition and synthesis over the past several decades has brought speech technology to a point where it is being used in "real-world" applications. However, despite the progress, the perception remains that the current technology is not flexible enough to allow easy voice communication with machines. The focus of speech research is now on producing systems that are accurate and robust but that do not impose unnecessary constraints on the user. This chapter takes a critical look at the shortcomings of the current speech recognition and synthesis algorithms, discusses the technical challenges facing research, and examines the new directions that research in speech recognition and synthesis must take in order to form the basis of new solutions suitable for supporting a wide range of applications.