4 resultados para Spatial practices and representations

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The onset of measles vaccination in England and Wales in 1968 coincided with a marked drop in the temporal correlation of epidemic patterns between major cities. We analyze a variety of hypotheses for the mechanisms driving this change. Straightforward stochastic models suggest that the interaction between a lowered susceptible population (and hence increased demographic noise) and nonlinear dynamics is sufficient to cause the observed drop in correlation. The decorrelation of epidemics could potentially lessen the chance of global extinction and so inhibit attempts at measles eradication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to investigate by using positron emission tomography (PET) whether the cortical pathways that are involved in visual perception of spatial location and object identity are also differentially implicated in retrieval of these types of information from episodic long-term memory. Subjects studied a set of displays consisting of three unique representational line drawings arranged in different spatial configurations. Later, while undergoing PET scanning, subjects' memory for spatial location and identity of the objects in the displays was tested and compared to a perceptual baseline task involving the same displays. In comparison to the baseline task, each of the memory tasks activated both the dorsal and the ventral pathways in the right hemisphere but not to an equal extent. There was also activation of the right prefrontal cortex. When PET scans of the memory tasks were compared to each other, areas of activation were very circumscribed and restricted to the right hemisphere: For retrieval of object identity, the area was in the inferior temporal cortex in the region of the fusiform gyrus (area 37), whereas for retrieval of spatial location, it was in the inferior parietal lobule in the region of the supramarginal gyrus (area 40). Thus, our study shows that distinct neural pathways are activated during retrieval of information about spatial location and object identity from long-term memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationships were examined between spatial learning and hippocampal concentrations of the α, β2, and γ isoforms of protein kinase C (PKC), an enzyme implicated in neuronal plasticity and memory formation. Concentrations of PKC were determined for individual 6-month-old (n = 13) and 24-month-old (n = 27) male Long–Evans rats trained in the water maze on a standard place-learning task and a transfer task designed for rapid acquisition. The results showed significant relationships between spatial learning and the amount of PKC among individual subjects, and those relationships differed according to age, isoform, and subcellular fraction. Among 6-month-old rats, those with the best spatial memory were those with the highest concentrations of PKCγ in the particulate fraction and of PKCβ2 in the soluble fraction. Aged rats had increased hippocampal PKCγ concentrations in both subcellular fractions in comparison with young rats, and memory impairment was correlated with higher PKCγ concentrations in the soluble fraction. No age difference or correlations with behavior were found for concentrations of PKCγ in a comparison structure, the neostriatum, or for PKCα in the hippocampus. Relationships between spatial learning and hippocampal concentrations of calcium-dependent PKC are isoform-specific. Moreover, age-related spatial memory impairment is associated with altered subcellular concentrations of PKCγ and may be indicative of deficient signal transduction and neuronal plasticity in the hippocampal formation.