6 resultados para Sparks, Cliff

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular calcium ions are involved in many forms of cellular function. To accommodate so many control functions, a complex spatiotemporal organization of calcium signaling has developed. In both excitable and nonexcitable cells, calcium signaling was found to fluctuate. Sudden localized increases in the intracellular calcium concentration—or calcium sparks—were found in heart, striated and smooth muscle, Xenopus Laevis oocytes, and HeLa and P12 cells. In the nervous system, intracellular calcium ions were found important in key processes such as transmitter release, repetitive firing, and gene expression. Hence, we examined whether calcium sparks also exist in neurons. Using confocal laser-scanning microscopy and fluorescent probes, we found that calcium sparks exist in two types of neuronal preparations: the presynaptic boutons of the lizard neuromuscular junction and rat hippocampal neurons in cell culture. Control experiments exclude the possibility that these calcium sparks originate from instrumental or biological artifacts. Calcium sparks seem to be just the tip of the iceberg of a more general phenomenon of intracellular calcium “noise.” We speculate that calcium sparks and calcium noise may be of key importance in calcium signaling in the nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurons undergoing targeted photolytic cell death degenerate by apoptosis. Clonal, multipotent neural precursor cells were transplanted into regions of adult mouse neocortex undergoing selective degeneration of layer II/III pyramidal neurons via targeted photolysis. These precursors integrated into the regions of selective neuronal death; 15 ± 7% differentiated into neurons with many characteristics of the degenerated pyramidal neurons. They extended axons and dendrites and established afferent synaptic contacts. In intact and kainic acid-lesioned control adult neocortex, transplanted precursors differentiated exclusively into glia. These results suggest that the microenvironmental alterations produced by this synchronous apoptotic neuronal degeneration in adult neocortex induced multipotent neural precursors to undergo neuronal differentiation which ordinarily occurs only during embryonic corticogenesis. Studying the effects of this defined microenvironmental perturbation on the differentiation of clonal neural precursors may facilitate identification of factors involved in commitment and differentiation during normal development. Because photolytic degeneration simulates some mechanisms underlying apoptotic neurodegenerative diseases, these results also suggest the possibility of neural precursor transplantation as a potential cell replacement or molecular support therapy for some diseases of neocortex, even in the adult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applying a brief repolarizing pre-pulse to a depolarized frog skeletal muscle fiber restores a small fraction of the transverse tubule membrane voltage sensors from the inactivated state. During a subsequent depolarizing test pulse we detected brief, highly localized elevations of myoplasmic Ca2+ concentration (Ca2+ “sparks”) initiated by restored voltage sensors in individual triads at all test pulse voltages. The latency histogram of these events gives the gating pattern of the sarcoplasmic reticulum (SR) calcium release channels controlled by the restored voltage sensors. Both event frequency and clustering of events near the start of the test pulse increase with test pulse depolarization. The macroscopic SR calcium release waveform, obtained from the spark latency histogram and the estimated open time of the channel or channels underlying a spark, exhibits an early peak and rapid marked decline during large depolarizations. For smaller depolarizations, the release waveform exhibits a smaller peak and a slower decline. However, the mean use time and mean amplitude of the individual sparks are quite similar at all test depolarizations and at all times during a given depolarization, indicating that the channel open times and conductances underlying sparks are essentially independent of voltage. Thus, the voltage dependence of SR Ca2+ release is due to changes in the frequency and pattern of occurrence of individual, voltage-independent, discrete release events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Src homology 3 (SH3) domains are conserved protein modules 50-70 amino acids long found in a variety of proteins with important roles in signal transduction. These domains have been shown to mediate protein-protein interactions by binding short proline-rich regions in ligand proteins. However, the ligand preferences of most SH3 domains and the role of these preferences in regulating SH3-mediated protein-protein interactions remain poorly defined. We have used a phage-displayed library of peptides of the form X6PXXPX6 to identify ligands for eight different SH3 domains. Using this approach, we have determined that each SH3 domain prefers peptide ligands with distinct sequence characteristics. Specifically, we have found that the Src SH3 domain selects peptides sharing the consensus motif LXXRPLPXpsiP, whereas Yes SH3 selects psiXXRPLPXLP, Abl SH3 selects PPXthetaXPPPpsiP, Cortactin SH3 selects +PPpsiPXKPXWL, p53bp2 SH3 selects RPXpsiPpsiR+SXP, PLCgamma SH3 selects PPVPPRPXXTL, Crk N-terminal SH3 selects psiPpsiLPpsiK, and Grb2 N-terminal SH3 selects +thetaDXPLPXLP (where psi, theta, and + represent aliphatic, aromatic, and basic residues, respectively). Furthermore, we have compared the binding of phage expressing peptides related to each consensus motif to a panel of 12 SH3 domains. Results from these experiments support the ligand preferences identified in the peptide library screen and evince the ability of SH3 domains to discern subtle differences in the primary structure of potential ligands. Finally, we have found that most known SH3-binding proteins contain proline-rich regions conforming to the ligand preferences of their respective SH3 targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A protein complex involved in apolipoprotein B (apoB) RNA editing, referred to as AUX240 (auxiliary factor containing p240), has been identified through the production of monoclonal antibodies against in vitro assembled 27S editosomes. The 240-kDa protein antigen of AUX240 colocalized with editosome complexes on immunoblots of native gels. Immunoadsorbed extracts were impaired in their ability to assemble editosomes beyond early intermediates and in their ability to edit apoB RNA efficiently. Supplementation of adsorbed extract with AUX240 restored both editosome assembly and editing activities. Several proteins, in addition to p240, ranging in molecular mass from 150 to 45 kDa coimmunopurify as AUX240 under stringent wash conditions. The activity of the catalytic subunit of the editosome APOBEC-1 and mooring sequence RNA binding proteins of 66 and 44 kDa could not be demonstrated in AUX240. The data suggest that p240 and associated proteins constitute an auxiliary factor required for efficient apoB RNA editing. We propose that the role of AUX240 may be regulatory and involve mediation or stabilization of interactions between APOBEC-1 subunits and editing site recognition proteins leading the assembly of the rat liver C/U editosome.