6 resultados para Space flight to Mercury

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although weightlessness is known to affect living cells, the manner by which this occurs is unknown. Some reaction-diffusion processes have been theoretically predicted as being gravity-dependent. Microtubules, a major constituent of the cellular cytoskeleton, self-organize in vitro by way of reaction-diffusion processes. To investigate how self-organization depends on gravity, microtubules were assembled under low gravity conditions produced during space flight. Contrary to the samples formed on an in-flight 1 × g centrifuge, the samples prepared in microgravity showed almost no self-organization and were locally disordered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 Å, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define β-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80°, 14° larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5° difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For nearly 200 years since their discovery in 1756, geologists considered the zeolite minerals to occur as fairly large crystals in the vugs and cavities of basalts and other traprock formations. Here, they were prized by mineral collectors, but their small abundance and polymineralic nature defied commercial exploitation. As the synthetic zeolite (molecular sieve) business began to take hold in the late 1950s, huge beds of zeolite-rich sediments, formed by the alteration of volcanic ash (glass) in lake and marine waters, were discovered in the western United States and elsewhere in the world. These beds were found to contain as much as 95% of a single zeolite; they were generally flat-lying and easily mined by surface methods. The properties of these low-cost natural materials mimicked those of many of their synthetic counterparts, and considerable effort has made since that time to develop applications for them based on their unique adsorption, cation-exchange, dehydration–rehydration, and catalytic properties. Natural zeolites (i.e., those found in volcanogenic sedimentary rocks) have been and are being used as building stone, as lightweight aggregate and pozzolans in cements and concretes, as filler in paper, in the take-up of Cs and Sr from nuclear waste and fallout, as soil amendments in agronomy and horticulture, in the removal of ammonia from municipal, industrial, and agricultural waste and drinking waters, as energy exchangers in solar refrigerators, as dietary supplements in animal diets, as consumer deodorizers, in pet litters, in taking up ammonia from animal manures, and as ammonia filters in kidney-dialysis units. From their use in construction during Roman times, to their role as hydroponic (zeoponic) substrate for growing plants on space missions, to their recent success in the healing of cuts and wounds, natural zeolites are now considered to be full-fledged mineral commodities, the use of which promise to expand even more in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the fascinating properties of the central nervous system is its ability to learn: the ability to alter its functional properties adaptively as a consequence of the interactions of an animal with the environment. The auditory localization pathway provides an opportunity to observe such adaptive changes and to study the cellular mechanisms that underlie them. The midbrain localization pathway creates a multimodal map of space that represents the nervous system's associations of auditory cues with locations in visual space. Various manipulations of auditory or visual experience, especially during early life, that change the relationship between auditory cues and locations in space lead to adaptive changes in auditory localization behavior and to corresponding changes in the functional and anatomical properties of this pathway. Traces of this early learning persist into adulthood, enabling adults to reacquire patterns of connectivity that were learned initially during the juvenile period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, libraries have provided a modest amount of information about grants and funding opportunities to researchers in need of research funding. Ten years ago, the University of Washington (UW) Health Sciences Libraries and Information Center joined in a cooperative effort with the School of Medicine to develop a complete, library-based grant and funding service for health sciences researchers called the Research Funding Service. The library provided space, access to the library collection, equipment, and electronic resources, and the School of Medicine funded staff and operations. The range of services now includes individual consultation appointments, an extensive Web site, classes on funding database searching and writing grant applications, a discussion series that frequently hosts guest speakers, a monthly newsletter with funding opportunities of interest to the six health sciences schools, extensive files on funding sources, and referral services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented.