13 resultados para Source of influence
em National Center for Biotechnology Information - NCBI
Resumo:
A single-chain Fv (scFv) fusion phage library derived from random combinations of VH and VL (variable heavy and light chains) domains in the antibody repertoire of a vaccinated melanoma patient was previously used to isolate clones that bind specifically to melanoma cells. An unexpected finding was that one of the clones encoded a truncated scFv molecule with most of the VL domain deleted, indicating that a VH domain alone can exhibit tumor-specific binding. In this report a VH fusion phage library containing VH domains unassociated with VL domains was compared with a scFv fusion phage library as a source of melanoma-specific clones; both libraries contained the same VH domains from the vaccinated melanoma patient. The results demonstrate that the clones can be isolated from both libraries, and that both libraries should be used to optimize the chance of isolating clones binding to different epitopes. Although this strategy has been tested only for melanoma, it is also applicable to other cancers. Because of their small size, human origin and specificity for cell surface tumor antigens, the VH and scFv molecules have significant advantages as tumor-targeting molecules for diagnostic and therapeutic procedures and can also serve as probes for identifying the cognate tumor antigens.
Resumo:
Damage from free radicals has been demonstrated in susceptible neuronal populations in cases of Alzheimer disease. In this study, we investigated whether iron, a potent source of the highly reactive hydroxyl radical that is generated by the Fenton reaction with H2O2, might contribute to the source of radicals in Alzheimer disease. We found, using a modified histochemical technique that relies on the formation of mixed valence iron complexes, that redox-active iron is associated with the senile plaques and neurofibrillary tangles—the pathological hallmark lesions of this disease. This lesion-associated iron is able to participate in in situ oxidation and readily catalyzes an H2O2-dependent oxidation. Furthermore, removal of iron was completely effected using deferoxamine, after which iron could be rebound to the lesions. Characterization of the iron-binding site suggests that binding is dependent on available histidine residues and on protein conformation. Taken together, these findings indicate that iron accumulation could be an important contributor toward the oxidative damage of Alzheimer disease.
Resumo:
Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10–100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at −50°C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect against the risk of cancer as effectively as much larger quantities of mature vegetables of the same variety.
Resumo:
Nuclear-localized mtDNA pseudogenes might explain a recent report describing a heteroplasmic mtDNA molecule containing five linked missense mutations dispersed over the contiguous mtDNA CO1 and CO2 genes in Alzheimer’s disease (AD) patients. To test this hypothesis, we have used the PCR primers utilized in the original report to amplify CO1 and CO2 sequences from two independent ρ° (mtDNA-less) cell lines. CO1 and CO2 sequences amplified from both of the ρ° cells, demonstrating that these sequences are also present in the human nuclear DNA. The nuclear pseudogene CO1 and CO2 sequences were then tested for each of the five “AD” missense mutations by restriction endonuclease site variant assays. All five mutations were found in the nuclear CO1 and CO2 PCR products from ρ° cells, but none were found in the PCR products obtained from cells with normal mtDNA. Moreover, when the overlapping nuclear CO1 and CO2 PCR products were cloned and sequenced, all five missense mutations were found, as well as a linked synonymous mutation. Unlike the findings in the original report, an additional 32 base substitutions were found, including two in adjacent tRNAs and a two base pair deletion in the CO2 gene. Phylogenetic analysis of the nuclear CO1 and CO2 sequences revealed that they diverged from modern human mtDNAs early in hominid evolution about 770,000 years before present. These data would be consistent with the interpretation that the missense mutations proposed to cause AD may be the product of ancient mtDNA variants preserved as nuclear pseudogenes.
Resumo:
Catecholamines, thought to derive from the extrinsic innervation of the ovary, participate in the regulation of ovarian development and mature gonadal function. Recently, intraovarian neurons containing tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, were described in the ovary of nonhuman primates. We now show that the primate ovary expresses both the genes encoding TH and dopamine β-hydroxylase (DBH), the key enzymes in norepinephrine (NE) biosynthesis. Ovarian neurons were identified as a site of TH and DBH gene expression, and surprisingly, oocytes were identified as an exclusive site of DBH synthesis. Oocytes contain neither TH mRNA nor protein, indicating that they are unable to synthesize dopamine (DA). They did, however, express a DA transporter gene identical to that found in human brain. The physiological relevance of this transporter system and DBH in oocytes was indicated by the ability of isolated oocytes to metabolize exogenous DA into NE. Isolated follicles containing oocytes—but not those from which the oocytes had been removed—responded to DA with an elevation in cAMP levels; this elevation was prevented by propranolol, a β-adrenoreceptor antagonist. The results suggest that oocytes and somatic cells are linked by a neuroendocrine loop consisting of NE synthesized in oocytes from actively transported DA and cAMP produced by somatic follicular cells in response to NE-induced β-adrenoreceptor activation.
Resumo:
Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. Because the curing of tobacco takes place under conditions that could lead to the formation of glycation products, we examined whether tobacco and tobacco smoke could generate these reactive species that would increase AGE formation in vivo. Our findings show that reactive glycation products are present in aqueous extracts of tobacco and in tobacco smoke in a form that can rapidly react with proteins to form AGEs. This reaction can be inhibited by aminoguanidine, a known inhibitor of AGE formation. We have named these glycation products “glycotoxins.” Like other known reducing sugars and reactive glycation products, glycotoxins form smoke, react with protein, exhibit a specific fluorescence when cross-linked to proteins, and are mutagenic. Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.
Resumo:
The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed.
Resumo:
The peptide guanylin, which has recently been isolated from the intestine, is involved in the regulation of fluid secretion in the intestinal epithelium by activation of guanylate cyclase C, the putative guanylin receptor. Since the latter protein is also expressed in airway epithelia, we investigated the lung of three mammalian species for the presence and cellular localization of guanylin by immunoblot (Western blot) analyses and light and electron microscopical immunocytochemistry. In Western blots of bovine, guinea pig, and rat lung extracts, three different guanylin antisera directed against the midportion and against the C terminus of the precursor molecule identified a peptide band corresponding to the apparent molecular mass of guanylin. Localization studies in the lung revealed that guanylin is exclusively confined to nonciliated secretory (Clara) cells in the lining of distal conducting airways. The presence of guanylin in the lung and particularly its specific localization to Clara cells indicate that these cells may play a pivotal role in the local (paracrine) regulation of electrolyte/water transport in airway epithelia.
Resumo:
Two methods are commonly used to measure the community metabolism (primary production, respiration, and calcification) of shallow-water marine communities and infer air–sea CO2 fluxes: the pH-total alkalinity and pH-O2 techniques. The underlying assumptions of each technique are examined to assess the recent claim that the most widely used technique in coral reefs (pH-total alkalinity), may have provided spurious results in the past because of high rates of nitrification and release of phosphoric acid in the water column [Chisholm, J. R. M. & Barnes, D. J. (1998) Proc. Natl. Acad. Sci. USA 95, 6566–6569]. At least three lines of evidence suggest that this claim is not founded. First, the rate of nitrification required to explain the discrepancy between the two methods recently reported is not realistic as it is much higher than the rates measured in another reef system and greater than the highest rate measured in a marine environment. Second, fluxes of ammonium, nitrate, and phosphorus are not consistent with high rates of nitrification and release of phosphoric acid. Third, the consistency of the metabolic parameters obtained by using the two techniques is in good agreement in two sites recently investigated. The pH-total alkalinity technique therefore appears to be applicable in most coral reef systems. Consequently, the conclusion that most coral reef flats are sources of CO2 to the atmosphere does not need revision. Furthermore, we provide geochemical evidence that calcification in coral reefs, as well as in other calcifying ecosystems, is a long-term source of CO2 for the atmosphere.
Resumo:
Studies with 15N indicate that appreciable generation of NH4+ from endogenous sources accompanies the uptake and assimilation of exogenous NH4+ by roots. To identify the source of NH4+ generation, maize (Zea mays L.) seedlings were grown on 14NH4+ and then exposed for 3 d to highly labeled 15NH4+. More of the entering 15NH4+ was incorporated into the protein-N fraction of roots in darkness (approximately 25%) than in the light (approximately 14%). Although the 14NH4+ content of roots declined rapidly to less than 1 μmol per plant, efflux of 14NH4+ continued throughout the 3-d period at an average daily rate of 14 μmol per plant. As a consequence, cumulative 14NH4+ efflux during the 3-d period accounted for 25% of the total 14N initially present in the root. Although soluble organic 14N in roots declined during the 3-d period, insoluble 14N remained relatively constant. In shoots both soluble organic 14N and 14NH4+ declined, but a comparable increase in insoluble 14N was noted. Thus, total 14N in shoots remained constant, reflecting little or no net redistribution of 14N between shoots and roots. Collectively, these observations reveal that catabolism of soluble organic N, not protein N, is the primary source of endogenous NH4+ generation in maize roots.
Resumo:
Predictions of earthquakes that are based on observations of precursory seismicity cannot depend on the average properties of the seismicity, such as the Gutenberg-Richter (G-R) distribution. Instead it must depend on the fluctuations in seismicity. We summarize the observational data of the fluctuations of seismicity in space, in time, and in a coupled space-time regime over the past 60 yr in Southern California, to provide a basis for determining whether these fluctuations are correlated with the times and locations of future strong earthquakes in an appropriate time- and space-scale. The simple extrapolation of the G-R distribution must lead to an overestimate of the risk due to large earthquakes. There may be two classes of earthquakes: the small earthquakes that satisfy the G-R law and the larger and large ones. Most observations of fluctuations of seismicity are of the rate of occurrence of smaller earthquakes. Large earthquakes are observed to be preceded by significant quiescence on the faults on which they occur and by an intensification of activity at distance. It is likely that the fluctuations are due to the nature of fractures on individual faults of the network of faults. There are significant inhomogeneities on these faults, which we assume will have an important influence on the nature of self-organization of seismicity. The principal source of the inhomogeneity on the large scale is the influence of geometry--i.e., of the nonplanarity of faults and the system of faults.
Resumo:
Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-terminal truncation of alpha 1C increases its activity approximately 4-fold in heterologous expression systems. Although most L-type calcium channels in brain are localized in the cell body and proximal dendrites, alpha 1C subunits in the hippocampus are also present in clusters along the dendrites of neurons. Examination by electron microscopy shows that these clusters of alpha 1C are localized in the postsynaptic membrane of excitatory synapses, which are known to contain glutamate receptors. Activation of N-methyl-D-aspartate (NMDA)-specific glutamate receptors induced the conversion of the long form of alpha 1C into the short form by proteolytic removal of the C terminus. Other classes of Ca2+ channel alpha1 subunits were unaffected. This proteolytic processing reaction required extracellular calcium and was blocked by inhibitors of the calcium-activated protease calpain, indicating that calcium entry through NMDA receptors activated proteolysis of alpha1C by calpain. Purified calpain catalyzed conversion of the long form of immunopurified alpha 1C to the short form in vitro, consistent with the hypothesis that calpain is responsible for processing of alpha 1C in hippocampal neurons. Our results suggest that NMDA receptor-induced processing of the postsynaptic class C L-type Ca2+ channel may persistently increase Ca2+ influx following intense synaptic activity and may influence Ca2+-dependent processes such as protein phosphorylation, synaptic plasticity, and gene expression.
Resumo:
This paper provides an overview of the colloquium's discussion session on natural language understanding, which followed presentations by M. Bates [Bates, M. (1995) Proc. Natl. Acad. Sci. USA 92, 9977-9982] and R. C. Moore [Moore, R. C. (1995) Proc. Natl. Acad. Sci. USA 92, 9983-9988]. The paper reviews the dual role of language processing in providing understanding of the spoken input and an additional source of constraint in the recognition process. To date, language processing has successfully provided understanding but has provided only limited (and computationally expensive) constraint. As a result, most current systems use a loosely coupled, unidirectional interface, such as N-best or a word network, with natural language constraints as a postprocess, to filter or resort the recognizer output. However, the level of discourse context provides significant constraint on what people can talk about and how things can be referred to; when the system becomes an active participant, it can influence this order. But sources of discourse constraint have not been extensively explored, in part because these effects can only be seen by studying systems in the context of their use in interactive problem solving. This paper argues that we need to study interactive systems to understand what kinds of applications are appropriate for the current state of technology and how the technology can move from the laboratory toward real applications.