12 resultados para Songs (Medium voice) with continuo.
em National Center for Biotechnology Information - NCBI
Resumo:
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
Resumo:
Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology.
Resumo:
Organelle acidification is an essential element of the endosomal-lysosomal pathway, but our understanding of the mechanisms underlying progression through this pathway has been hindered by the absence of adequate methods for quantifying intraorganelle pH. To address this problem in neurons, we developed a direct quantitative method for accurately determining the pH of endocytic organelles in live cells. In this report, we demonstrate that the ratiometric fluorescent pH indicator 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) is the most advantageous available probe for such pH measurements. To measure intraorganelle pH, cells were labeled by endocytic uptake of HPTS, the ratio of fluorescence emission intensities at excitation wavelengths of 450 nm and 405 nm (F450/405) was calculated for each organelle, and ratios were converted to pH values by using standard curves for F450/405 vs. pH. Proper calibration is critical for accurate measurement of pH values: standard curves generated in vitro yielded artifactually low organelle pH values. Calibration was unaffected by the use of culture medium buffered with various buffers or different cell types. By using this technique, we show that both acidic and neutral endocytically derived organelles exist in the axons of sympathetic neurons in different steady-state proportions than in the cell body. Furthermore, we demonstrate that these axonal organelles have a bimodal pH distribution, indicating a rapid acidification step in their maturation that reduces the average pH of a fraction of the organelles by 2 pH units while leaving few organelles of intermediate pH at steady state. Finally, we demonstrate a spatial gradient or organelle pH along axons, with the relative frequency of acidic organelles increasing with proximity to the cell body.
Resumo:
Glutathione (GSH) is a major source of reducing equivalents in mammalian cells. To examine the role of GSH synthesis in development and cell growth, we generated mice deficient in GSH by a targeted disruption of the heavy subunit of γ-glutamylcysteine synthetase (γGCS-HStm1), an essential enzyme in GSH synthesis. Embryos homozygous for γGCS-HStm1 fail to gastrulate, do not form mesoderm, develop distal apoptosis, and die before day 8.5. Lethality results from apoptotic cell death rather than reduced cell proliferation. We also isolated cell lines from homozygous mutant blastocysts in medium containing GSH. These cells also grow indefinitely in GSH-free medium supplemented with N-acetylcysteine and have undetectable levels of GSH; further, they show no changes in mitochondrial morphology as judged by electron microscopy. These data demonstrate that GSH is required for mammalian development but dispensable in cell culture and that the functions of GSH, not GSH itself, are essential for cell growth.
Resumo:
We have developed a tetracycline-repressible female-specific lethal genetic system in the vinegar fly Drosophila melanogaster. One component of the system is the tetracycline-controlled transactivator gene under the control of the fat body and female-specific transcription enhancer from the yolk protein 1 gene. The other component consists of the proapoptotic gene hid under the control of a tetracycline-responsive element. Males and females of a strain carrying both components are viable on medium supplemented with tetracycline, but only males survive on normal medium. A strain with such properties would be ideal for a sterile-insect release program, which is most effective when only males are released in the field.
Resumo:
To investigate the role of phosphatidylglycerol (PG) in photosynthesis, we constructed a mutant defective in the CDP-diacylglycerol synthase gene from a cyanobacterium, Synechocystis sp. PCC6803. The mutant, designated as SNC1, required PG supplementation for growth. Growth was repressed in PG-free medium concomitantly with the decrease in cellular content of PG. These results indicate that PG is essential, and that SNC1 is defective in PG synthesis. Decrease in PG content was accompanied by a reduction in the cellular content of chlorophyll, but with little effect on the contents of phycobilisome pigments, which showed that levels of chlorophyll–protein complexes decreased without alteration of those of phycobilisomes. Regardless of the decrease in the PG content, CO2-dependent photosynthesis by SNC1 was similar to that by the wild type on a chlorophyll basis, but consequently became lower on a cell basis. Simultaneously, the ratio of oxygen evolution of photosystem II (PSII) measured with p-benzoquinone to that of CO2-dependent photosynthesis, which ranged between 1.3 and 1.7 in the wild type. However, it was decreased in SNC1 from 1.3 to 0.4 during the early growth phase where chlorophyll content and CO2-dependent photosynthesis were little affected, and then finally to 0.1, suggesting that PSII first lost its ability to reduce p-benzoquinone and then decreased in its level and actual activity. These results indicate that PG contributes to the accumulation of chlorophyll–protein complexes in thylakoid membranes, and also to normal functioning of PSII.
petit1, a Conditional Growth Mutant of Arabidopsis Defective in Sucrose-Dependent Elongation Growth1
Resumo:
The hypocotyl of Arabidopsis is well suited for the analysis of cell elongation because it elongates without cell division. We have isolated a new class of recessive mutants, petit1 (pet1), which are defective in aspects of hypocotyl elongation. The short-hypocotyl phenotype of pet1 is caused by shortened cells. The cells of the elongation zone of the hypocotyl are often deformed. pet1 also shows defects in elongation of the roots, flower stalk, leaves, petals, pedicels, and siliques, and these defects cannot be repaired by the application of auxin, gibberellin, brassinolide, or an inhibitor of ethylene biosynthesis. The short-hypocotyl phenotype of pet1 is pronounced only in growth medium supplemented with sucrose, which has promotive effects on hypocotyl elongation. In pet1 this effect is much reduced, causing the sucrose-dependent short-hypocotyl phenotype of pet1. pet1 accumulates more soluble sugars than the wild type and also shows more intensive iodo-starch staining in the cotyledon and hypocotyl. These results indicate that PETIT1 is involved in a sugar-dependent elongation process that may include correct assembly of expanding cell wall architecture.
Resumo:
Suspension-cultured Chenopodium album L. cells are capable of continuous, long-term growth on a boron-deficient medium. Compared with cultures grown with boron, these cultures contained more enlarged and detached cells, had increased turbidity due to the rupture of a small number of cells, and contained cells with an increased cell wall pore size. These characteristics were reversed by the addition of boric acid (≥7 μm) to the boron-deficient cells. C. album cells grown in the presence of 100 μm boric acid entered the stationary phase when they were not subcultured, and remained viable for at least 3 weeks. The transition from the growth phase to the stationary phase was accompanied by a decrease in the wall pore size. Cells grown without boric acid or with 7 μm boric acid were not able to reduce their wall pore size at the transition to the stationary phase. These cells could not be kept viable in the stationary phase, because they continued to expand and died as a result of wall rupture. The addition of 100 μm boric acid prevented wall rupture and the wall pore size was reduced to normal values. We conclude that boron is required to maintain the normal pore structure of the wall matrix and to mechanically stabilize the wall at growth termination.
Resumo:
Overexpression of the Neu/ErbB-2 receptor tyrosine kinase has been implicated in the genesis of human breast cancer. Indeed, expression of either activated or wild-type neu in the mammary epithelium of transgenic mice results in the induction of mammary tumors. Previously, we have shown that many of the mammary tumors arising in transgenic mice expressing wild-type neu occur through somatic activating mutations within the neu transgene itself. Here we demonstrate that these mutations promote dimerization of the Neu receptor through the formation of disulfide bonds, resulting in its constitutive activation. To explore the role of conserved cysteine residues within the region deleted in these altered Neu proteins, we examined the transforming potential of a series of Neu receptors in which the individual cysteine residues were mutated. These analyses indicated that mutation of certain cysteine residues resulted in the oncogenic activation of Neu. The increased transforming activity displayed by the altered receptors correlated with constitutive dimerization that occurred in a disulfide bond-dependent manner. We further demonstrate that addition of 2-mercaptoethanol to the culture medium interfered with the specific transforming activity of the mutant Neu receptors. These observations suggest that oncogenic activation of Neu results from constitutive disulfide bond-dependent dimerization.
Resumo:
Pancreatic islets from young normal and scorbutic male guinea pigs were examined for their ability to release insulin when stimulated with elevated D-glucose. Islets from normal guinea pigs released insulin in a D-glucose-dependent manner showing a rapid initial secretion phase and three secondary secretion waves during a 120-min period. Islets from scorbutic guinea pigs failed to release insulin during the immediate period, and only delayed and decreased responses were observed over the 40-60 min after D-glucose elevation. Insulin release from scorbutic islets was greatly elevated if 5 mM L-ascorbic acid 2-phosphate was supplemented in the perifusion medium during the last 60 min of perifusion. When 5 mM L-ascorbic acid 2-phosphate was added to the perifusion medium concurrently with elevation of medium D-glucose, islets from scorbutic guinea pigs released insulin as rapidly as control guinea pig islets and to a somewhat greater extent. L-Ascorbic acid 2-phosphate without elevated D-glucose had no effect on insulin release by islets from normal or scorbutic guinea pigs. The pancreas from scorbutic guinea pigs contained 2.4 times more insulin than that from control guinea pigs, suggesting that the decreased insulin release from the scorbutic islets was not due to decreased insulin synthesis but due to abnormal insulin secretion.
Resumo:
N-Methyl-D-aspartate (NMDA) receptors play an important role in the development of retinal axon arbors in the mammalian lateral geniculate nucleus (LGN). We investigated whether blockade of NMDA receptors in vivo or in vitro affects the dendritic development of LGN neurons during the period that retinogeniculate axons segregate into on-center and off-center sublaminae. Osmotic minipumps containing either the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV) or saline were implanted in ferret kits at postnatal day 14. After 1 week, LGN neurons were intracellularly injected with Lucifer yellow. Infusion of D-APV in vivo led to an increase in the number of branch points and in the density of dendritic spines compared with age-matched normal or saline-treated animals. To examine the time course of spine formation, crystals of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate were placed in the LGN in brain slices from 14- to 18-day-old ferrets. Labeled LGN cell dendrites were imaged on-line in living slices by confocal microscopy, with slices maintained either in normal perfusion medium or with the addition of D-APV or NMDA to the medium. Addition of D-APV in vitro at doses specific for blocking NMDA receptors led to a > 6-fold net increase in spine density compared with control or NMDA-treated slices. Spines appeared within a few hours of NMDA receptor blockade, indicating a rapid local response by LGN cells in the absence of NMDA receptor activation. Thus, activity-dependent structural changes in postsynaptic cells act together with changes in presynaptic arbors to shape projection patterns and specific retinogeniculate connections.