5 resultados para Somatostatin analogues

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated cell proliferation modulated by cholecystokinin (CCK) and somatostatin analogue RC-160 in CHO cells bearing endogenous CCKA receptors and stably transfected by human subtype sst5 somatostatin receptor. CCK stimulated cell proliferation of CHO cells. This effect was suppressed by inhibitor of the soluble guanylate cyclase, LY 83583, the inhibitor of the cGMP dependent kinases, KT 5823, and the inhibitor of mitogen-activated protein (MAP) kinase kinase, PD 98059. CCK treatment induced an increase of intracellular cGMP concentrations, but concomitant addition of LY 83583 virtually suppressed this increase. CCK also activated both phosphorylation and activity of p42-MAP kinase; these effects were inhibited by KT 5823. All the effects of CCK depended on a pertussis toxin-dependent G protein. Somatostatin analogue RC-160 inhibited CCK-induced stimulation of cell proliferation but it did not potentiate the suppressive effect of the inhibitors LY 83583 and KT 5823. RC-160 inhibited both CCK-induced intracellular cGMP formation as well as activation of p42-MAP kinase phosphorylation and activity. This inhibitory effect was observed at doses of RC-160 similar to those necessary to occupy the sst5 recombinant receptor and to inhibit CCK-induced cell proliferation. We conclude that, in CHO cells, the proliferation and the MAP kinase signaling cascade depend on a cGMP-dependent pathway. These effects are positively regulated by CCK and negatively influenced by RC-160, interacting through CCKA and sst5 receptors, respectively. These studies provide a characterization of the antiproliferative signal mediated by sst5 receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of nonpeptide somatostatin agonists which bind selectively and with high affinity to somatostatin receptor subtype 2 (sst2) have been synthesized. One of these compounds, L-054,522, binds to human sst2 with an apparent dissociation constant of 0.01 nM and at least 3,000-fold selectivity when evaluated against the other somatostatin receptors. L-054,522 is a full agonist based on its inhibition of forskolin-stimulated adenylate cyclase activity in Chinese hamster ovary-K1 cells stably expressing sst2. L-054,522 has a potent inhibitory effect on growth hormone release from rat primary pituitary cells and glucagon release from isolated mouse pancreatic islets. Intravenous infusion of L-054,522 to rats at 50 μg/kg per hr causes a rapid and sustained reduction in growth hormone to basal levels. The high potency and selectivity of L-054,522 for sst2 will make it a useful tool to further characterize the physiological functions of this receptor subtype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two critical requirements for developing methods for the site-specific incorporation of amino acid analogues into proteins in vivo are (i) a suppressor tRNA that is not aminoacylated by any of the endogenous aminoacyl-tRNA synthetases (aaRSs) and (ii) an aminoacyl-tRNA synthetase that aminoacylates the suppressor tRNA but no other tRNA in the cell. Here we describe two such aaRS–suppressor tRNA pairs, one for use in the yeast Saccharomyces cerevisiae and another for use in Escherichia coli. The “21st synthetase–tRNA pairs” include E. coli glutaminyl-tRNA synthetase (GlnRS) along with an amber suppressor derived from human initiator tRNA, for use in yeast, and mutants of the yeast tyrosyl-tRNA synthetase (TyrRS) along with an amber suppressor derived from E. coli initiator tRNA, for use in E. coli. The suppressor tRNAs are aminoacylated in vivo only in the presence of the heterologous aaRSs, and the aminoacylated tRNAs function efficiently in suppression of amber codons. Plasmids carrying the E. coli GlnRS gene can be stably maintained in yeast. However, plasmids carrying the yeast TyrRS gene could not be stably maintained in E. coli. This lack of stability is most likely due to the fact that the wild-type yeast TyrRS misaminoacylates the E. coli proline tRNA. By using error-prone PCR, we have isolated and characterized three mutants of yeast TyrRS, which can be stably expressed in E. coli. These mutants still aminoacylate the suppressor tRNA essentially quantitatively in vivo but show increased discrimination in vitro for the suppressor tRNA over the E. coli proline tRNA by factors of 2.2- to 6.8-fold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a series of new in vitro and in vivo data proving the selective antitumor activity of our somatostatin structural derivative, TT-232. In vitro, it inhibited the proliferation of 20 different human tumor cell lines in the range of 50-95% and induced a very strong apoptosis. In vivo TT-232 was effective on transplanted animal tumors (Colon 26, B16 melanoma, and S180 sarcoma) and on human tumor xenografts. Treatment of MDA-MB-231 human breast cancer xenografted in mice with low submaximal doses of TT-232 [0.25 and 0.5 mg/kg of body weight (b.w.)] caused an average 80% decrease in the tumor volume resulting in 30% tumor-free animals surviving for longer than 200 days. Treatment of prostate tumor (PC-3) xenografted animals with 20 mg/kg of b.w. of TT-232 for 3 weeks resulted in 60% decrease in tumor volume and 100% survival even after 60 days, while 80% of nontreated animals perished. We have demonstrated that TT-232 did not bind to the membrane preparation of rat pituitary and cortex and had no antisecretory activity. TT-232 was not toxic at a dose of 120 mg/kg of b.w. in mice. Long-term incubation (24 h) of tumor cells with TT-232 caused significant inhibition of tyrosine kinases in good correlation with the apoptosis-inducing effect. The level of p53 or KU86 did not change following TT-232 treatment, suggesting a p53-independent apoptotic effect. Preincubation of human breast cancer cells (MDA-MB-453) with TT-232 for 2 h decreased the growth factor receptor autophosphorylation. All of these data suggest that TT-232 is a promising and selective antitumor agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In tetrapods, only one gene encoding a somatostatin precursor has been identified so far. The present study reports the characterization of the cDNA clones that encode two distinct somatostatin precursors in the brain of the frog Rana ridibunda. The cDNAs were isolated by using degenerate oligonucleotides based on the sequence of the central region of somatostatin to screen a frog brain cDNA library. One of the cDNAs encodes a 115-amino acid protein (prepro-somatostatin-14; PSS1) that exhibits a high degree of structural similarity with the mammalian somatostatin precursor. The other cDNA encodes a 103-amino acid protein (prepro-[Pro2, Met13]somatostatin-14; PSS2) that contains the sequence of the somatostatin analog (peptide SS2) at its C terminus, but does not exhibit appreciable sequence similarity with PSS1 in the remaining region. In situ hybridization studies indicate differential expression of the PSS1 and PSS2 genes in the septum, the lateral part of the pallium, the amygdaloid complex, the posterior nuclei of the thalamus, the ventral hypothalamic nucleus, the torus semicircularis and the optic tectum. The somatostatin variant SS2 was significantly more potent (4-6 fold) than somatostatin itself in displacing [125I-Tyr0, D-Trp8] somatostatin-14 from its specific binding sites. The present study indicates that the two somatostatin variants could exert different functions in the frog brain and pituitary. These data also suggest that distinct genes encoding somatostatin variants may be expressed in the brain of other tetrapods.