6 resultados para Soil and crops. Soil-plant relationships. Soil productivity

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jasmonic acid, synthesized from linolenic acid (the octadecanoid pathway), has been proposed to be part of a signal transduction pathway that mediates the induction of defensive genes in plants in response to oligouronide and polypeptide signals generated by insect and pathogen attacks. We report here that the induction of proteinase inhibitor accumulation in tomato leaves by plant-derived oligogalacturonides and fungal-derived chitosan oligosaccharides is severely reduced by two inhibitors (salicylic acid and diethyldi-thiocarbamic acid) of the octadecanoid pathway, supporting a role for the pathway in signaling by oligosaccharides. Jasmonic acid levels in leaves of tomato plants increased several fold within 2 hr after supplying the polypeptide systemin, oligogalacturonides, or chitosan to the plants through their cut stems, as expected if they utilize the octadecanoid pathway. The time course of jasmonic acid accumulation in tomato leaves in response to wounding was consistent with its proposed role in signaling proteinase inhibitor mRNA and protein synthesis. The cumulative evidence supports a model for the activation of defensive genes in plants in response to insect and pathogen attacks in which various elicitors generated at the attack sites activate the octadecanoid pathway via different recognition events to induce the expression of defensive genes in local and distal tissues of the plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and β-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant genome research is needed as the foundation for an entirely new level of efficiency and success in the application of genetics and breeding to crop plants and products from crop plants. Genetic improvements in crop plants beyond current capabilities are needed to meet the growing world demand not only for more food, but also a greater diversity of food, higher-quality food, and safer food, produced on less land, while conserving soil, water, and genetic resources. Plant biology research, which is poised for dramatic advances, also depends fundamentally on plant genome research. The current Arabidopsis Genome Project has proved of immediate value to plant biology research, but a much greater effort is needed to ensure the full benefits of plant biology and especially plant genome research to agriculture. International cooperation is critical, both because genome projects are too large for any one country and the information forthcoming is of benefit to the world and not just the countries that do the work. Recent research on grass genomes has revealed that, because of extensive senteny and colinearity within linkage groups that make up the chromosomes, new information on the genome of one grass can be used to understand the genomes and predict the location of genes on chromosomes of the other grasses. Genome research applied to grasses as a group thereby can increase the efficiency and effectiveness of breeding for improvement of each member of this group, which includes wheat, corn, and rice, the world’s three most important sources of food.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of water/energy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, water/energy and nitrogen limitation “equilibrate,” but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarize our recent studies showing that angiosperm mitochondrial (mt) genomes have experienced remarkably high rates of gene loss and concomitant transfer to the nucleus and of intron acquisition by horizontal transfer. Moreover, we find substantial lineage-specific variation in rates of these structural mutations and also point mutations. These findings mostly arise from a Southern blot survey of gene and intron distribution in 281 diverse angiosperms. These blots reveal numerous losses of mt ribosomal protein genes but, with one exception, only rare loss of respiratory genes. Some lineages of angiosperms have kept all of their mt ribosomal protein genes whereas others have lost most of them. These many losses appear to reflect remarkably high (and variable) rates of functional transfer of mt ribosomal protein genes to the nucleus in angiosperms. The recent transfer of cox2 to the nucleus in legumes provides both an example of interorganellar gene transfer in action and a starting point for discussion of the roles of mechanistic and selective forces in determining the distribution of genetic labor between organellar and nuclear genomes. Plant mt genomes also acquire sequences by horizontal transfer. A striking example of this is a homing group I intron in the mt cox1 gene. This extraordinarily invasive mobile element has probably been acquired over 1,000 times separately during angiosperm evolution via a recent wave of cross-species horizontal transfers. Finally, whereas all previously examined angiosperm mtDNAs have low rates of synonymous substitutions, mtDNAs of two distantly related angiosperms have highly accelerated substitution rates.