2 resultados para Socket.io

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gaseous second messenger nitric oxide (NO), which readily diffuses in brain tissue, has been implicated in cerebellar long-term depression (LTD), a form of synaptic plasticity thought to be involved in cerebellar learning. Can NO diffusion facilitate cerebellar learning? The inferior olive (IO) cells, which provide the error signals necessary for modifying the granule cell–Purkinje cell (PC) synapses by LTD, fire at ultra-low firing rates in vivo, rarely more than 2–4 spikes within a second. In this paper, we show that NO diffusion can improve the transmission of sporadic IO error signals to PCs within cerebellar cortical functional units, or microzones. To relate NO diffusion to adaptive behavior, we add NO diffusion and a “volumic” LTD learning rule, i.e., a learning rule that depends both on the synaptic activity and on the NO concentration at the synapse, to a cerebellar model for arm movement control. Our results show that biologically plausible diffusion leads to an increase in information transfer of the error signals to the PCs when the IO firing rate is ultra-low. This, in turn, enhances cerebellar learning as shown by improved performance in an arm-reaching task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a "plug and socket" targeting technique to generate a mouse model of beta 0-thalassemia in which both the b1 and b2 adult globin genes have been deleted. Mice homozygous for this deletion (Hbbth-3/Hbbth-3) die perinatally, similar to the most severe form of Cooley anemia in humans. Mice heterozygous for the deletion appear normal, but their hematologic indices show characteristics typical of severe thalassemia, including dramatically decreased hematocrit, hemoglobin, red blood cell counts, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, as well as dramatically increased reticulocyte counts, serum bilirubin concentrations, and red cell distribution widths. Tissue and organ damage typical of beta-thalassemia, such as bone deformities and splenic enlargement due to increased hematopoiesis, are also seen in the heterozygous animals, as is spontaneous iron overload in the spleen, liver, and kidneys. The mice homozygous for the b1 and b2 deletions should be of great value in developing therapies for the treatment of thalassemias in utero. The heterozygous animals will be useful for studying the pathophysiology of thalassemias and have the potential of generating a model of sickle cell anemia when mated with appropriate transgenic animals.