8 resultados para Social Innovation by Design

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social behaviors are often targets of natural selection among higher organisms, but quantifying the effects of such selection is difficult. We have used the bacterium Myxococcus xanthus as a model system for studying the evolution of social interactions. Changes in the social behaviors of 12 M. xanthus populations were quantified after 1,000 generations of evolution in a liquid habitat, in which interactions among individuals were continually hindered by shaking and low cell densities. Derived lineages were compared with their ancestors with respect to maximum growth rate, motility rates on hard and soft agar, fruiting body formation ability, and sporulation frequency during starvation. Improved performance in the liquid selective regime among evolved lines was usually associated with significant reductions in all of the major social behaviors of M. xanthus. Maintenance of functional social behaviors is apparently detrimental to fitness under asocial growth conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Daphniphyllum alkaloids are a group of highly complex polycyclic alkaloids. Examination of the structures if several members of this family of natural products led to a hypothesis about their mode of biosynthesis (depicted in Scheme SI). Based on this hypothetical biosynthetic pathway, a laboratory synthesis was designed that incorporated as a key transformation the novel one-pot transformation of dialdehyde 24 to pentacyclic unsaturated amine 25. This process turned out to be an exceptionally efficient way to construct the pentacyclic nucleus of the Daphniphyllum alkaloids. However, a purely fortuitous discovery, resulting from accidental use of methylamine rather than ammonia, led to a great improvement in the synthesis and suggests an even more attractive possible biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain entry into cells, viruses utilize a variety of different cell-surface molecules. Foot-and-mouth disease virus (FMDV) binds to cell-surface integrin molecules via an arginine-glycine-aspartic acid (RGD) sequence in capsid protein VP1. Binding to this particular cell-surface molecule influences FMDV tropism, and virus/receptor interactions appear to be responsible, in part, for selection of antigenic variants. To study early events of virus-cell interaction, we engineered an alternative and novel receptor for FMDV. Specifically, we generated a new receptor by fusing a virus-binding, single-chain antibody (scAb) to intracellular adhesion molecule 1 (ICAM1). Cells that are normally not susceptible to FMDV infection became susceptible after being transfected with DNA encoding the scAb/ICAM1 protein. An escape mutant (B2PD.3), derived with the mAb used to generate the genetically engineered receptor, was restricted for growth on the scAb/ICAM1 cells, but a variant of B2PD.3 selected by propagation on scAb/ICAM1 cells grew well on these cells. This variant partially regained wild-type sequence in the epitope recognized by the mAb and also regained the ability to be neutralize by the mAb. Moreover, RGD-deleted virions that are noninfectious in animals and other cell types grew to high titers and were able to form plaques on scAb/ ICAM1 cells. These studies demonstrate the first production of a totally synthetic cell-surface receptor for a virus. This novel approach will be useful for studying virus reception and for the development of safer vaccines against viral pathogens of animals and humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phase-sensitive electrophoresis, and the directionality of the bend has been determined as a compression of the minor helix groove. The magnitude of the resulting duplex bend was found to be dependent on the length of the polymeric linker in a fashion consistent with a simple geometric model. Data suggested that a 50-70 degrees bend was achieved by binding of the TFO chimera with the shortest linker span (18 rotatable bonds). Equilibrium analysis showed that, relative to a chimera which did not bend the duplex, the stability of the triple helix possessing a 50-70 degrees bend was reduced by less than 1 kcal/mol of that of the unbent complex. Based upon this similarity, it is proposed that duplex DNA may be much more flexible with respect to minor groove compression than previously assumed. It is shown that this unusual flexibility is consistent with recent quantitation of protein-induced minor groove bending.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central structural feature of natural proteins is a tightly packed and highly ordered hydrophobic core. If some measure of exquisite, native-like core packing is necessary for enzymatic function, this would constitute a significant obstacle to the development of novel enzymes, either by design or by natural or experimental evolution. To test the minimum requirements for a core to provide sufficient structural integrity for enzymatic activity, we have produced mutants of the ribonuclease barnase in which 12 of the 13 core residues have together been randomly replaced by hydrophobic alternatives. Using a sensitive biological screen, we find that a strikingly high proportion of these mutants (23%) retain enzymatic activity in vivo. Further substitution at the 13th core position shows that a similar proportion of completely random hydrophobic cores supports enzyme function. Of the active mutants produced, several have no wild-type core residues. These results imply that hydrophobicity is nearly a sufficient criterion for the construction of a functional core and, in conjunction with previous studies, that refinement of a crudely functional core entails more stringent sequence constraints than does the initial attainment of crude core function. Since attainment of crude function is the critical initial step in evolutionary innovation, the relatively scant requirements contributed by the hydrophobic core would greatly reduce the initial hurdle on the evolutionary pathway to novel enzymes. Similarly, experimental development of novel functional proteins might be simplified by limiting core design to mere specification of hydrophobicity and using iterative mutation-selection to optimize core structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inadvertent introduction of the fire ant Solenopsis invicta to the United States from South America provides the opportunity to study recent social evolution by comparing social organization in native and introduced populations. We report that several important elements of social organization in multiple-queen nests differ consistently and dramatically between ants in Argentina and the United States. Colonies in Argentina contain relatively few queens and they are close relatives, whereas colonies in the United States contain high numbers of unrelated queens. A corollary of these differences is that workers in the native populations are significantly related to the new queens that they rear in contrast to the zero relatedness between workers and new queens in the introduced populations. The observed differences in queen number and relatedness signal a shift in the breeding biology of the introduced ants that is predicted on the basis of the high population densities in the new range. An additional difference in social organization that we observed, greater proportions of permanently unmated queens in introduced than in native populations, is predicted from the loss of alleles at the sex-determining locus and consequent skewing of operational sex ratios in the colonizing ants. Thus, significant recent social evolution in fire ants is consistent with theoretical expectations based on the altered ecology and population genetics of the introduced populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the sequence-ordering tendencies induced by design into different fast-folding, thermally stable native structures interfere. This interference results in a type of quasiorthogonality between optimal native structures, which divides sequence space into fast-folding, thermally stable families surrounded by slow-folding, low stability shells. A concrete example of this effect is provided by using a simple α carbon type model in which a complete correspondence is established between sequence and structure. It is speculated that gaps can occur in the space of protein-like sequences separating the sequence families and resulting in a mechanism for stability and diversity of protein sequence information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific recombination offers a potential way to alter a living genome by design in a precise and stable manner. This potential requires strategies which can be used to regulate the recombination event. We describe a strategy to regulate FLP recombinase activity which relies on expressing FLP as a fusion protein with steroid hormone receptor ligand binding domains (LBDs). In the absence of a ligand cognate to the LBD, the recombinase activity of the fusion protein is extremely low. Upon ligand administration, recombinase activity is rapidly induced. These results outline the basis for inducible expression or disruption strategies based on inducible recombination. Additionally, we have exploited the conditional nature of FLP-LBD fusion proteins to direct integration of a plasmid into a specific genomic site at frequencies approaching the frequency of random integration.