8 resultados para Snps
em National Center for Biotechnology Information - NCBI
Resumo:
rSNP_Guide is a novel curated database system for analysis of transcription factor (TF) binding to target sequences in regulatory gene regions altered by mutations. It accumulates experimental data on naturally occurring site variants in regulatory gene regions and site-directed mutations. This database system also contains the web tools for SNP analysis, i.e., active applet applying weight matrices to predict the regulatory site candidates altered by a mutation. The current version of the rSNP_Guide is supplemented by six sub-databases: (i) rSNP_DB, on DNA–protein interaction caused by mutation; (ii) SYSTEM, on experimental systems; (iii) rSNP_BIB, on citations to original publications; (iv) SAMPLES, on experimentally identified sequences of known regulatory sites; (v) MATRIX, on weight matrices of known TF sites; (vi) rSNP_Report, on characteristic examples of successful rSNP_Tools implementation. These databases are useful for the analysis of natural SNPs and site-directed mutations. The databases are available through the Web, http://wwwmgs.bionet.nsc.ru/mgs/systems/rsnp/.
Resumo:
A loxP-transposon retrofitting strategy for generating large nested deletions from one end of the insert DNA in bacterial artificial chromosomes and P1 artificial chromosomes was described recently [Chatterjee, P. K. & Coren, J. S. (1997) Nucleic Acids Res. 25, 2205–2212]. In this report, we combine this procedure with direct sequencing of nested-deletion templates by using primers located in the transposon end to illustrate its value for position-specific single-nucleotide polymorphism (SNP) discovery from chosen regions of large insert clones. A simple ampicillin sensitivity screen was developed to facilitate identification and recovery of deletion clones free of transduced transposon plasmid. This directed approach requires minimal DNA sequencing, and no in vitro subclone library generation; positionally oriented SNPs are a consequence of the method. The procedure is used to discover new SNPs as well as physically map those identified from random subcloned libraries or sequence databases. The deletion templates, positioned SNPs, and markers are also used to orient large insert clones into a contig. The deletion clone can serve as a ready resource for future functional genomic studies because each carries a mammalian cell-specific antibiotic resistance gene from the transposon. Furthermore, the technique should be especially applicable to the analysis of genomes for which a full genome sequence or radiation hybrid cell lines are unavailable.
Resumo:
On the causal hypothesis, most genetic determinants of disease are single-nucleotide polymorphisms (SNPs) that are likely to be selected as markers for positional cloning. On the proximity hypothesis, most disease determinants will not be included among markers but may be detected through linkage disequilibrium with other SNPs. In that event, allelic association among SNPs is an essential factor in positional cloning. Recent simulation based on monotonic population expansion suggests that useful association does not usually extend beyond 3 kb. This is contradicted by significant disequilibrium at much greater distances, with corresponding reduction in the number of SNPs required for a cost-effective genome scan. A plausible explanation is that cyclical expansions follow population bottlenecks that establish new disequilibria. Data on more than 1,000 locus pairs indicate that most disequilibria trace to the Neolithic, with no apparent difference between haplotypes that are random or selected through a major disease gene. Short duration may be characteristic of alleles contributing to disease susceptibility and haplotypes characteristic of particular ethnic groups. Alleles that are highly polymorphic in all ethnic groups may be older, neutral, or advantageous, in weak disequilibrium with nearby markers, and therefore less useful for positional cloning of disease genes. Significant disequilibrium at large distance makes the number of suitably chosen SNPs required for genome screening as small as 30,000, or 1 per 100 kb, with greater density (including less common SNPs) reserved for candidate regions.
Resumo:
An approach to analyzing single-nucleotide polymorphisms (SNPs) found in the human genome has been developed that couples a recently developed invasive cleavage assay for nucleic acids with detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The invasive cleavage assay is a signal amplification method that enables the analysis of SNPs by MALDI-TOF MS directly from human genomic DNA without the need for initial target amplification by PCR. The results presented here show the successful genotyping by this approach of twelve SNPs located randomly throughout the human genome. Conventional Sanger sequencing of these SNP positions confirmed the accuracy of the MALDI-TOF MS analysis results. The ability to unambiguously detect both homozygous and heterozygous genotypes is clearly demonstrated. The elimination of the need for target amplification by PCR, combined with the inherently rapid and accurate nature of detection by MALDI-TOF MS, gives this approach unique and significant advantages in the high-throughput genotyping of large numbers of SNPs, useful for locating, identifying, and characterizing the function of specific genes.
Resumo:
The human β2-adrenergic receptor gene has multiple single-nucleotide polymorphisms (SNPs), but the relevance of chromosomally phased SNPs (haplotypes) is not known. The phylogeny and the in vitro and in vivo consequences of variations in the 5′ upstream and ORF were delineated in a multiethnic reference population and an asthmatic cohort. Thirteen SNPs were found organized into 12 haplotypes out of the theoretically possible 8,192 combinations. Deep divergence in the distribution of some haplotypes was noted in Caucasian, African-American, Asian, and Hispanic-Latino ethnic groups with >20-fold differences among the frequencies of the four major haplotypes. The relevance of the five most common β2-adrenergic receptor haplotype pairs was determined in vivo by assessing the bronchodilator response to β agonist in asthmatics. Mean responses by haplotype pair varied by >2-fold, and response was significantly related to the haplotype pair (P = 0.007) but not to individual SNPs. Expression vectors representing two of the haplotypes differing at eight of the SNP loci and associated with divergent in vivo responsiveness to agonist were used to transfect HEK293 cells. β2-adrenergic receptor mRNA levels and receptor density in cells transfected with the haplotype associated with the greater physiologic response were ≈50% greater than those transfected with the lower response haplotype. The results indicate that the unique interactions of multiple SNPs within a haplotype ultimately can affect biologic and therapeutic phenotype and that individual SNPs may have poor predictive power as pharmacogenetic loci.
Resumo:
Examination of the phenotypic effects of specific mutations has been extensively used to identify candidate genes affecting traits of interest. However, such analyses do not reveal anything about the evolutionary forces acting at these loci, or whether standing allelic variation contributes to phenotypic variance in natural populations. The Drosophila gene methuselah (mth) has been proposed as having major effects on organismal stress response and longevity phenotype. Here, we examine patterns of polymorphism and divergence at mth in population level samples of Drosophila melanogaster, D. simulans, and D. yakuba. Mth has experienced an unusually high level of adaptive amino acid divergence concentrated in the intra- and extracellular loop domains of the receptor protein, suggesting the historical action of positive selection on those regions of the molecule that modulate signal transduction. Further analysis of single nucleotide polymorphisms (SNPs) in D. melanogaster provided evidence for contemporary and spatially variable selection at the mth locus. In ten surveyed populations, the most common mth haplotype exhibited a 40% cline in frequency that coincided with population level differences in multiple life-history traits including lifespan. This clinal pattern was not associated with any particular SNP in the coding region, indicating that selection is operating at a closely linked site that may be involved in gene expression. Together, these consistently nonneutral patterns of inter- and intraspecific variation suggest adaptive evolution of a signal transduction pathway that may modulate lifespan in nature.
Resumo:
The key requirements for high-throughput single-nucleotide polymorphism (SNP) typing of DNA samples in large-scale disease case-control studies are automatability, simplicity, and robustness, coupled with minimal cost. In this paper we describe a fluorescence technique for the detection of SNPs that have been amplified by using the amplification refractory mutation system (ARMS)-PCR procedure. Its performance was evaluated using 32 sequence-specific primer mixes to assign the HLA-DRB alleles to 80 lymphoblastoid cell line DNAs chosen from our database for their diversity. All had been typed previously by alternative methods, either direct sequencing or gel electrophoresis. We believe the detection system that we call AMDI (alkaline-mediated differential interaction) satisfies the above criteria and is suitable for general high-throughput SNP typing.
Resumo:
We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3́end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.