38 resultados para Snare

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A protease-resistant core domain of the neuronal SNARE complex consists of an α-helical bundle similar to the proposed fusogenic core of viral fusion proteins [Skehel, J. J. & Wiley, D. C. (1998) Cell 95, 871–874]. We find that the isolated core of a SNARE complex efficiently fuses artificial bilayers and does so faster than full length SNAREs. Unexpectedly, a dramatic increase in speed results from removal of the N-terminal domain of the t-SNARE syntaxin, which does not affect the rate of assembly of v-t SNARES. In the absence of this negative regulatory domain, the half-time for fusion of an entire population of lipid vesicles by isolated SNARE cores (≈10 min) is compatible with the kinetics of fusion in many cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast neurotransmission requires that docked synaptic vesicles be located near the presynaptic N-type or P/Q-type calcium channels. Specific protein–protein interactions between a synaptic protein interaction (synprint) site on N-type and P/Q-type channels and the presynaptic SNARE proteins syntaxin, SNAP-25, and synaptotagmin are required for efficient, synchronous neurotransmitter release. Interaction of the synprint site of N-type calcium channels with syntaxin and SNAP-25 has a biphasic calcium dependence with maximal binding at 10–20 μM. We report here that the synprint sites of the BI and rbA isoforms of the α1A subunit of P/Q-type Ca2+ channels have different patterns of interactions with synaptic proteins. The BI isoform of α1A specifically interacts with syntaxin, SNAP-25, and synaptotagmin independent of Ca2+ concentration and binds with high affinity to the C2B domain of synaptotagmin but not the C2A domain. The rbA isoform of α1A interacts specifically with synaptotagmin and SNAP-25 but not with syntaxin. Binding of synaptotagmin to the rbA isoform of α1A is Ca2+-dependent, with maximum affinity at 10–20 μM Ca2+. Although the rbA isoform of α1A binds well to both the C2A and C2B domains of synaptotagmin, only the interaction with the C2A domain is Ca2+-dependent. These differential, Ca2+-dependent interactions of Ca2+ channel synprint sites with SNARE proteins may modulate the efficiency of transmitter release triggered by Ca2+ influx through these channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25 (20% amino acid sequence identity) and the recently identified SNAP-23 (19% amino acid sequence identity). Northern blot analysis shows that the mRNA for this protein is widely expressed. Polyclonal antibodies against this protein detect a 32-kDa protein present in both cytosol and membrane fractions. The membrane-bound form of this protein is revealed to be primarily localized to the Golgi apparatus by indirect immunofluorescence microscopy, a finding that is further established by electron microscopy immunogold labeling showing that this protein is present in tubular-vesicular structures of the Golgi apparatus. Biochemical characterizations establish that this protein behaves like a SNAP receptor and is thus named Golgi SNARE of 32 kDa (GS32). GS32 in the Golgi extract is preferentially retained by the immobilized GST–syntaxin 6 fusion protein. The coimmunoprecipitation of syntaxin 6 but not syntaxin 5 or GS28 from the Golgi extract by antibodies against GS32 further sustains the preferential interaction of GS32 with Golgi syntaxin 6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between v-SNAREs on transport vesicles and t-SNAREs on target membranes is required for membrane traffic in eukaryotic cells. Here we identify Vti1p as the first v-SNARE protein found to be required for biosynthetic traffic into the yeast vacuole, the equivalent of the mammalian lysosome. Certain vti1-ts yeast mutants are defective in alkaline phosphatase transport from the Golgi to the vacuole and in targeting of aminopeptidase I from the cytosol to the vacuole. VTI1 interacts genetically with the vacuolar t-SNARE VAM3, which is required for transport of both alkaline phosphatase and aminopeptidase I to the vacuole. The v-SNARE Nyv1p forms a SNARE complex with Vam3p in homotypic vacuolar fusion; however, we find that Nyv1p is not required for any of the three biosynthetic pathways to the vacuole. v-SNAREs were thought to ensure specificity in membrane traffic. However, Vti1p also functions in two additional membrane traffic pathways: Vti1p interacts with the t-SNAREs Pep12p in traffic from the TGN to the prevacuolar compartment and with Sed5p in retrograde traffic to the cis-Golgi. The ability of Vti1p to mediate multiple fusion steps requires additional proteins to ensure specificity in membrane traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane traffic in eukaryotic cells relies on recognition between v-SNAREs on transport vesicles and t-SNAREs on target membranes. Here we report the identification of AtVTI1a and AtVTI1b, two Arabidopsis homologues of the yeast v-SNARE Vti1p, which is required for multiple transport steps in yeast. AtVTI1a and AtVTI1b share 60% amino acid identity with one another and are 32 and 30% identical to the yeast protein, respectively. By suppressing defects found in specific strains of yeast vti1 temperature-sensitive mutants, we show that AtVTI1a can substitute for Vti1p in Golgi-to-prevacuolar compartment (PVC) transport, whereas AtVTI1b substitutes in two alternative pathways: the vacuolar import of alkaline phosphatase and the so-called cytosol-to-vacuole pathway used by aminopeptidase I. Both AtVTI1a and AtVTI1b are expressed in all major organs of Arabidopsis. Using subcellular fractionation and immunoelectron microscopy, we show that AtVTI1a colocalizes with the putative vacuolar cargo receptor AtELP on the trans-Golgi network and the PVC. AtVTI1a also colocalizes with the t-SNARE AtPEP12p to the PVC. In addition, AtVTI1a and AtPEP12p can be coimmunoprecipitated from plant cell extracts. We propose that AtVTI1a functions as a v-SNARE responsible for targeting AtELP-containing vesicles from the trans-Golgi network to the PVC, and that AtVTI1b is involved in a different membrane transport process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ORF YOL018c (TLG2) of Saccharomyces cerevisiae encodes a protein that belongs to the syntaxin protein family. The proteins of this family, t-SNAREs, are present on target organelles and are thought to participate in the specific interaction between vesicles and acceptor membranes in intracellular membrane trafficking. TLG2 is not an essential gene, and its deletion does not cause defects in the secretory pathway. However, its deletion in cells lacking the vacuolar ATPase subunit Vma2p leads to loss of viability, suggesting that Tlg2p is involved in endocytosis. In tlg2Δ cells, internalization was normal for two endocytic markers, the pheromone α-factor and the plasma membrane uracil permease. In contrast, degradation of α-factor and uracil permease was delayed in tlg2Δ cells. Internalization of positively charged Nanogold shows that the endocytic pathway is perturbed in the mutant, which accumulates Nanogold in primary endocytic vesicles and shows a greatly reduced complement of early endosomes. These results strongly suggest that Tlg2p is a t-SNARE involved in early endosome biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The docking and fusion of cargo-containing vesicles with target membranes of eukaryotic cells is mediated by the interaction of SNARE proteins present on both vesicle and target membranes. In many cases, the target membrane SNARE, or t-SNARE, exists as a complex of syntaxin with a member of the SNAP-25 family of palmitoylated proteins. We have identified a novel human kinase SNAK (SNARE kinase) that specifically phosphorylates the nonneuronal t-SNARE SNAP-23 in vivo. Interestingly, only SNAP-23 that is not assembled into t-SNARE complexes is phosphorylated by SNAK, and phosphorylated SNAP-23 resides exclusively in the cytosol. Coexpression with SNAK significantly enhances the stability of unassembled SNAP-23, and as a consequence, the assembly of newly synthesized SNAP-23 with syntaxin is augmented. These data demonstrate that phosphorylation of SNAP-23 by SNAK enhances the kinetics of t-SNARE assembly in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major physiological role of insulin is the regulation of glucose uptake into skeletal and cardiac muscle and adipose tissue, mediated by an insulin-stimulated translocation of GLUT4 glucose transporters from an intracellular vesicular pool to the plasma membrane. This process is similar to the regulated docking and fusion of vesicles in neuroendocrine cells, a process that involves SNARE-complex proteins. Recently, several SNARE proteins were found in adipocytes: vesicle-associated membrane protein (VAMP-2), its related homologue cellubrevin, and syntaxin-4. In this report we show that treatment of permeabilized 3T3-L1 adipocytes with botulinum neurotoxin D, which selectively cleaves VAMP-2 and cellubrevin, inhibited the ability of insulin to stimulate translocation of GLUT4 vesicles to the plasma membrane. Furthermore, treatment of the permeabilized adipocytes with glutathione S-transferase fusion proteins encoding soluble forms of VAMP-2 or syntaxin-4 also effectively blocked insulin-regulated GLUT4 translocation. These results provide evidence of a functional role for SNARE-complex proteins in insulin-stimulated glucose uptake and suggest that adipocytes utilize a mechanism of regulating vesicle docking and fusion analogous to that found in neuroendocrine tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SNARE [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein receptor] proteins are essential for membrane fusion and are conserved from yeast to humans. Sequence alignments of the most conserved regions were mapped onto the recently solved crystal structure of the heterotrimeric synaptic fusion complex. The association of the four α-helices in the synaptic fusion complex structure produces highly conserved layers of interacting amino acid side chains in the center of the four-helix bundle. Mutations in these layers reduce complex stability and cause defects in membrane traffic even in distantly related SNAREs. When syntaxin-4 is modeled into the synaptic fusion complex as a replacement of syntaxin-1A, no major steric clashes arise and the most variable amino acids localize to the outer surface of the complex. We conclude that the main structural features of the neuronal complex are highly conserved during evolution. On the basis of these features we have reclassified SNARE proteins into Q-SNAREs and R-SNAREs, and we propose that fusion-competent SNARE complexes generally consist of four-helix bundles composed of three Q-SNAREs and one R-SNARE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sed5p is the only syntaxin family member required for protein transport through the yeast Golgi and it is known to bind up to nine other soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins in vivo. We describe in vitro binding experiments in which we identify ternary and quaternary Sed5p-containing SNARE complexes. The formation of SNARE complexes among these endoplasmic reticulum- and Golgi-localized proteins requires Sed5p and is syntaxin-selective. In addition, Sed5p-containing SNARE complexes form selectively and this selectivity is mediated by Sed5p-containing intermediates that discriminate among subsequent binding partners. Although many of these SNAREs have overlapping distributions in vivo, the SNAREs that form complexes with Sed5p in vitro reflect their functionally distinct locales. Although SNARESNARE interactions are promiscuous and a single SNARE protein is often found in more than one complex, both the biochemical as well as genetic analyses reported here suggest that this is not a result of nonselective direct substitution of one SNARE for another. Rather our data are consistent with the existence of multiple (perhaps parallel) trafficking pathways where Sed5p-containing SNARE complexes play overlapping and/or distinct functional roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid rafts are microdomains present within membranes of most cell types. These membrane microdomains, which are enriched in cholesterol and glycosphingolipids, have been implicated in the regulation of certain signal transduction and membrane traffic pathways. To investigate the possibility that lipid rafts organize exocytotic pathways in neuroendocrine cells, we examined the association of proteins of the exocytotic machinery with rafts purified from PC12 cells. The target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (tSNARE) proteins syntaxin 1A and synaptosomal-associated protein of 25 kDa (SNAP-25) were both found to be highly enriched in lipid rafts (≈25-fold). The vesicle SNARE vesicle-associated membrane protein (VAMP)2 was also present in raft fractions, but the extent of this recovery was variable. However, further analysis revealed that the majority of VAMP2 was associated with a distinct class of raft with different detergent solubility characteristics to the rafts containing syntaxin 1A and SNAP-25. Interestingly, no other studied secretory proteins were significantly associated with lipid rafts, including SNARE effector proteins such as nSec1. Chemical crosslinking experiments showed that syntaxin1A/SNAP-25 heterodimers were equally present in raft and nonraft fractions, whereas syntaxin1A/nSec1 complexes were detected only in nonraft fractions. SDS-resistance assays revealed that raft-associated syntaxin1A/SNAP-25 heterodimers were able to interact with VAMP2. Finally, reduction of cellular cholesterol levels decreased the extent of regulated exocytosis of dopamine from PC12 cells. The results described suggest that the interaction of SNARE proteins with lipid rafts is important for exocytosis and may allow structural and spatial organization of the secretory machinery.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins of the syntaxin, SNAP-25, and VAMP families mediate intracellular membrane fusion through the formation of helical bundles that span opposing membranes. Soluble SNARE domains that lack their integral membrane anchors inhibit membrane fusion by forming nonfunctional complexes with endogenous SNARE proteins. In this study we investigate the dependence of membrane fusion on the concentration of a soluble SNARE coil domain derived from VAMP2. The increase in the inhibition of fusion observed with increasing concentration of inhibitor is best fit to a function that suggests three SNARE complexes cooperate to mediate fusion of a single vesicle. These three complexes likely contribute part of a protein and lipidic fusion pore.