10 resultados para Snake venomic
em National Center for Biotechnology Information - NCBI
Resumo:
The nucleotide sequences of four genes encoding Trimeresurus gramineus (green habu snake, crotalinae) venom gland phospholipase A2 (PLA2; phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) isozymes were compared internally and externally with those of six genes encoding Trimeresurus flavoviridis (habu snake, crotalinae) venom gland PLA2 isozymes. The numbers of nucleotide substitutions per site (KN) for the noncoding regions including introns were one-third to one-eighth of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions of exons, indicating that the noncoding regions are much more conserved than the protein-coding regions. The KN values for the introns were found to be nearly equivalent to those of introns of T. gramineus and T. flavoviridis TATA box-binding protein genes, which are assumed to be a general (nonvenomous) gene. Thus, it is evident that the introns of venom gland PLA2 isozyme genes have evolved at a similar rate to those of nonvenomous genes. The numbers of nucleotide substitutions per nonsynonymous site (KA) were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes. All of the data combined reveal that Darwinian-type accelerated evolution has universally occurred only in the protein-coding regions of crotalinae snake venom PLA2 isozyme genes.
Resumo:
The establishment of dorsal–ventral polarity in the oocyte involves two sets of genes. One set belongs to the gurken-torpedo signaling pathway and affects the development of the egg chorion as well as the polarity of the embryo. The second set of genes affects only the dorsal–ventral polarity of the embryo but not the eggshell. gastrulation defective is one of the earliest acting of this second set of maternally required genes. We have cloned and characterized the gastrulation defective gene and determined that it encodes a protein structurally related to the serine protease superfamily, which also includes the Snake, Easter, and Nudel proteins. These data provide additional support for the involvement of a protease cascade in generating an asymmetric signal (i.e., asymmetric Spätzle activity) during establishment of dorsal–ventral polarity in the Drosophila embryo.
Resumo:
Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2′-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1°C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3′ ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3′-5′ exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-Å resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 Å and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2′-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.
Resumo:
HIV-1 replication is inhibited by the incorporation of chain-terminating nucleotides at the 3′ end of the growing DNA chain. Here we show a nucleotide-dependent reaction catalyzed by HIV-1 reverse transcriptase that can efficiently remove the chain-terminating residue, yielding an extendible primer terminus. Radioactively labeled 3′-terminal residue from the primer can be transferred into a product that is resistant to calf intestinal alkaline phosphatase and sensitive to cleavage by snake venom phosphodiesterase. The products formed from different nucleotide substrates have unique electrophoretic migrations and have been identified as dinucleoside tri- or tetraphosphates. The reaction is inhibited by dNTPs that are complementary to the next position on the template (Ki ≈ 5 μM), suggesting competition between dinucleoside polyphosphate synthesis and DNA polymerization. Dinucleoside polyphosphate synthesis was inhibited by an HIV-1 specific non-nucleoside inhibitor and was absent in mutant HIV-1 reverse transcriptase deficient in polymerase activity, indicating that this activity requires a functional polymerase active site. We suggest that dinucleoside polyphosphate synthesis occurs by transfer of the 3′ nucleotide from the primer to the pyrophosphate moiety in the nucleoside di- or triphosphate substrate through a mechanism analogous to pyrophosphorolysis. Unlike pyrophosphorolysis, however, the reaction is nucleotide-dependent, is resistant to pyrophosphatase, and produces dinucleoside polyphosphates. Because it occurs at physiological concentrations of ribonucleoside triphosphates, this reaction may determine the in vivo activity of many nucleoside antiretroviral drugs.
Resumo:
We have shown previously by Southern blot analysis that Bov-B long interspersed nuclear elements (LINEs) are present in different Viperidae snake species. To address the question as to whether Bov-B LINEs really have been transmitted horizontally between vertebrate classes, the analysis has been extended to a larger number of vertebrate, invertebrate, and plant species. In this paper, the evolutionary origin of Bov-B LINEs is shown unequivocally to be in Squamata. The previously proposed horizontal transfer of Bov-B LINEs in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The horizontal transfer of Bov-B LINEs from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution. The ancestor of Colubroidea snakes is a possible donor of Bov-B LINEs to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINEs in Ruminantia and the fossil data of Ruminantia to be 40–50 My ago. The phylogenetic relationships of Bov-B LINEs from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINEs have been maintained stably by vertical transmission since the origin of Squamata in the Mesozoic era.
Resumo:
Dorsoventral patterning of the Drosophila embryo is initiated by a ventralizing signal. Production of this signal requires the serine proteases Gastrulation Defective (GD), Snake, and Easter, which genetic studies suggest act sequentially in a cascade that is activated locally in response to a ventral cue provided by the pipe gene. Here, we demonstrate biochemically that GD activates Snake, which in turn activates Easter. We also provide evidence that GD zymogen cleavage is important for triggering this cascade but is not spatially localized by pipe. Our results suggest that a broadly, rather than locally, activated protease cascade produces the ventralizing signal, so a distinct downstream step in this cascade must be spatially regulated to restrict signaling to the ventral side of the embryo.
Resumo:
Snake-venom α-bungarotoxin is a member of the α-neurotoxin family that binds with very high affinity to the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. The structure of the complex between α-bungarotoxin and a 13-mer peptide (WRYYESSLEPYPD) that binds the toxin with high affinity, thus inhibiting its interactions with AChR with an IC50 of 2 nM, has been solved by 1H-NMR spectroscopy. The bound peptide folds into a β-hairpin structure created by two antiparallel β-strands, which combine with the already existing triple-stranded β-sheet of the toxin to form a five-stranded intermolecular, antiparallel β-sheet. Peptide residues Y3P, E5P, and L8P have the highest intermolecular contact area, indicating their importance in the binding of α-bungarotoxin; W1P, R2P, and Y4P also contribute significantly to the binding. A large number of characteristic hydrogen bonds and electrostatic and hydrophobic interactions are observed in the complex. The high-affinity peptide exhibits inhibitory potency that is better than any known peptide derived from AChR, and is equal to that of the whole α-subunit of AChR. The high degree of sequence similarity between the peptide and various types of AChRs implies that the binding mode found within the complex might possibly mimic the receptor binding to the toxin. The design of the high-affinity peptide was based on our previous findings: (i) the detection of a lead peptide (MRYYESSLKSYPD) that binds α-bungarotoxin, using a phage-display peptide library, (ii) the information about the three-dimensional structure of α-bungarotoxin/lead-peptide complex, and (iii) the amino acid sequence analysis of different AChRs.
Resumo:
The γ-carboxyglutamic acid (Gla) domain of blood coagulation factors is responsible for Ca2+-dependent phospholipid membrane binding. Factor X-binding protein (X-bp), an anticoagulant protein from snake venom, specifically binds to the Gla domain of factor X. The crystal structure of X-bp in complex with the Gla domain peptide of factor X at 2.3-Å resolution showed that the anticoagulation is based on the fact that two patches of the Gla domain essential for membrane binding are buried in the complex formation. The Gla domain thus is expected to be a new target of anticoagulant drugs, and X-bp provides a basis for designing them. This structure also provides a membrane-bound model of factor X.
Resumo:
The ligand binding site of the nicotinic acetylcholine receptor (AcChoR) is localized in the alpha-subunit within a domain containing the tandem Cys-192 and -193. By analyzing the binding-site region of AcChoR from animal species that are resistant to alpha-neurotoxins, we have previously shown that four residues in this region, at positions 187, 189, 194, and 197, differ between animals sensitive (e.g., mouse) and resistant (e.g., mongoose and snake) to alpha-bungarotoxin (alpha-BTX). In the present study, we performed site-directed mutagenesis on a fragment of the mongoose AcChoR alpha-subunit (residues 122-205) and exchanged residues 187, 189, 194, and 197, either alone or in combination, with those present in the mouse alpha-subunit sequence. Only the mongoose fragment in which all four residues were mutated to the mouse ones exhibited alpha-BTX binding similar to that of the mouse fragment. The mongoose double mutation in which Leu-194 and His-197 were replaced with proline residues, which are present at these positions in the mouse AcChoR and in all other toxin binders, bound alpha-BTX to approximately 60% of the level of binding exhibited by the mouse fragment. In addition, replacement of either Pro-194 or -197 in the mouse fragment with serine and histidine, respectively, markedly decreased alpha-BTX binding. All other mutations resulted in no or just a small increase in alpha-BTX binding. These results have led us to propose two subsites in the binding domain for alpha-BTX: the proline subsite, which includes Pro-194 and -197 and is critical for alpha-BTX binding, and the aromatic subsite, which includes amino acid residues 187 and 189 and determines the extent of alpha-BTX binding.