5 resultados para Smooth transition conditional correlation

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the mechanisms responsible for the termination of Ca2+-activated Cl− currents (ICl(Ca)), simultaneous measurements of whole cell currents and intracellular Ca2+ concentration ([Ca2+]i) were made in equine tracheal myocytes. In nondialyzed cells, or cells dialyzed with 1 mM ATP, ICl(Ca) decayed before the [Ca2+]i decline, whereas the calcium-activated potassium current decayed at the same rate as [Ca2+]i. Substitution of AMP-PNP or ADP for ATP markedly prolonged the decay of ICl(Ca), resulting in a rate of current decay similar to that of the fall in [Ca2+]i. In the presence of ATP, dialysis of the calmodulin antagonist W7, the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN93, or a CaMKII-specific peptide inhibitor the rate of ICl(Ca) decay was slowed and matched the [Ca2+]i decline, whereas H7, a nonspecific kinase inhibitor with low affinity for CaMKII, was without effect. When a sustained increase in [Ca2+]i was produced in ATP dialyzed cells, the current decayed completely, whereas in cells loaded with 5′-adenylylimidodiphosphate (AMP-PNP), KN93, or the CaMKII inhibitory peptide, ICl(Ca) did not decay. Slowly decaying currents were repeatedly evoked in ADP- or AMP-PNP-loaded cells, but dialysis of adenosine 5′-O-(3-thiotriphosphate) or okadaic acid resulted in a smaller initial ICl(Ca), and little or no current (despite a normal [Ca2+]i transient) with a second stimulation. These data indicate that CaMKII phosphorylation results in the inactivation of calcium-activated chloride channels, and that transition from the inactivated state to the closed state requires protein dephosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a γ-tubulin–green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of this centrosome are unusual when compared with, e.g., vertebrate cells. In interphase the Dictyostelium centrosome is a box-shaped structure comprised of three major layers, surrounded by an amorphous corona from which microtubules emerge. Structural duplication takes place during prophase, as opposed to G1/S in vertebrate cells. The three layers of the box-shaped core structure increase in size. The surrounding corona is lost, an event accompanied by a decrease in signal intensity of γ-tubulin–green fluorescent protein at the centrosome and the breakdown of the interphase microtubule system. At the prophase/prometaphase transition the separation into two mitotic centrosomes takes place via an intriguing lengthwise splitting process where the two outer layers of the prophase centrosome peel away from each other and become the mitotic centrosomes. Spindle microtubules are now nucleated from surfaces that previously were buried inside the interphase centrosome. Finally, at the end of telophase, the mitotic centrosomes fold in such a way that the microtubule-nucleating surface remains on the outside of the organelle. Thus in each cell cycle the centrosome undergoes an apparent inside-out/outside-in reversal of its layered structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast excitation-driven fluctuations in the fluorescence emission of yellow-shifted green fluorescent protein mutants T203Y and T203F, with S65G/S72A, are discovered in the 10−6–10−3-s time range, by using fluorescence correlation spectroscopy at 10−8 M. This intensity-dependent flickering is conspicuous at high pH, with rate constants independent of pH and viscosity with a minor temperature effect. The mean flicker rate increases linearly with excitation intensity for at least three decades, but the mean dark fraction of the molecules undergoing these dynamics is independent of illumination intensity over ≈6 × 102 to 5 × 106 W/cm2. These results suggest that optical excitation establishes an equilibration between two molecular states of different spectroscopic properties that are coupled only via the excited state as a gateway. This reversible excitation-driven transition has a quantum efficiency of ≈10−3. Dynamics of external protonation, reversibly quenching the fluorescence, are also observed at low pH in the 10- to 100-μs time range. The independence of these two bright–dark flicker processes implies the existence of at least two separate dark states of these green fluorescent protein mutants. Time-resolved fluorescence measurements reveal a single exponential decay of the excited state population with 3.8-ns lifetime, after 500-nm excitation, that is pH independent. Our fluorescence correlation spectroscopy results are discussed in terms of recent theoretical studies that invoke isomerization of the chromophore as a nonradiative channel of the excited state relaxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We cloned a rat vascular chymase (RVCH) from smooth muscle cells (SMCs) that converts angiotensin I to II and is up-regulated in SMC from spontaneously hypertensive vs. normotensive rats. To determine whether increased activity of RVCH is sufficient to cause hypertension, transgenic mice were generated with targeted conditional expression of RVCH to SMC, with the use of the tetracycline-controlled transactivator (tTA). We confirmed conditional expression of RVCH by mRNA, protein, and chymase activity in the absence, but not in the presence, of dietary doxycycline. The systolic blood pressure (mmHg), measured by carotid artery cannulation at 10–12 weeks of age, was higher in tTA+/RVCH+ mice than in nonbinary transgenic littermates (136 ± 4 vs. 109 ± 3) (P < 0.05), as were the diastolic and mean pressures. Hypertension was completely reversed by doxycycline, suggesting a causal link with chymase expression. Medial thickening of mesenteric arteries from tTA+/RVCH+ mice vs. littermates (0.82 ± 0.1 vs. 0.42 ± 0.02) (P < 0.05) was associated with increased SMC proliferation, as judged by positive immunoreactivity, with the use of an antibody to the proliferating cell nuclear antigen. These structural changes were prevented by doxycycline. Perfusion myography of mesenteric arteries from tTA+/RVCH+ mice also revealed increased vasoconstriction in response to phenylephrine and impaired metacholine-induced vasodilatation when compared with littermate controls or with the doxycyline-treated group. Our studies suggest that up-regulation of this vascular chymase is sufficient to cause a hypertensive arteriopathy, and that RVCH may be a candidate gene and a therapeutic target in patients with high blood pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have chosen tumors of the uterine cervix as a model system to identify chromosomal aberrations that occur during carcinogenesis. A phenotype/genotype correlation was established in defined regions of archived, formalin-fixed, and hematoxylin/eosin-stained tissue sections that were dissected from normal cervical epithelium (n = 3), from mild (n = 4), moderate (n = 6), and severe dysplasias/carcinomas in situ (CIS) (n = 13), and from invasive carcinomas (n = 10) and investigated by comparative genomic hybridization. The same tissues were analyzed for DNA ploidy, proliferative activity, and the presence of human papillomavirus (HPV) sequences. The results show that an increase in proliferative activity and tetraploidization had occurred already in mildly dysplastic lesions. No recurrent chromosomal aberrations were observed in DNA extracted from normal epithelium or from mild and moderate dysplasias, indicating that the tetraploidization precedes the loss or gain of specific chromosomes. A gain of chromosome 3q became visible in one of the severe dysplasias/CIS. Notably, chromosome 3q was overrepresented in 90% of the carcinomas and was also found to have undergone a high-level copy-number increase (amplification). We therefore conclude that the gain of chromosome 3q that occurs in HPV16-infected, aneuploid cells represents a pivotal genetic aberration at the transition from severe dysplasia/CIS to invasive cervical carcinoma.