3 resultados para Skate
em National Center for Biotechnology Information - NCBI
Resumo:
The Chondrichthyes (cartilaginous fishes) are commonly accepted as being sister group to the other extant Gnathostomata (jawed vertebrates). To clarify gnathostome relationships and to aid in resolving and dating the major piscine divergences, we have sequenced the complete mtDNA of the starry skate and have included it in phylogenetic analysis along with three squalomorph chondrichthyans—the common dogfish, the spiny dogfish, and the star spotted dogfish—and a number of bony fishes and amniotes. The direction of evolution within the gnathostome tree was established by rooting it with the most closely related non-gnathostome outgroup, the sea lamprey, as well as with some more distantly related taxa. The analyses placed the chondrichthyans in a terminal position in the piscine tree. These findings, which also suggest that the origin of the amniote lineage is older than the age of the oldest extant bony fishes (the lungfishes), challenge the evolutionary direction of several morphological characters that have been used in reconstructing gnathostome relationships. Applying as a calibration point the age of the oldest lungfish fossils, 400 million years, the molecular estimate placed the squalomorph/batomorph divergence at ≈190 million years before present. This dating is consistent with the occurrence of the earliest batomorph (skates and rays) fossils in the paleontological record. The split between gnathostome fishes and the amniote lineage was dated at ≈420 million years before present.
Resumo:
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor through which halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause altered gene expression and toxicity. The AHR belongs to the basic helix–loop–helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulatory proteins, whose members play key roles in development, circadian rhythmicity, and environmental homeostasis; however, the normal cellular function of the AHR is not yet known. As part of a phylogenetic approach to understanding the function and evolutionary origin of the AHR, we sequenced the PAS homology domain of AHRs from several species of early vertebrates and performed phylogenetic analyses of these AHR amino acid sequences in relation to mammalian AHRs and 24 other members of the PAS family. AHR sequences were identified in a teleost (the killifish Fundulus heteroclitus), two elasmobranch species (the skate Raja erinacea and the dogfish Mustelus canis), and a jawless fish (the lamprey Petromyzon marinus). Two putative AHR genes, designated AHR1 and AHR2, were found both in Fundulus and Mustelus. Phylogenetic analyses indicate that the AHR2 genes in these two species are orthologous, suggesting that an AHR gene duplication occurred early in vertebrate evolution and that multiple AHR genes may be present in other vertebrates. Database searches and phylogenetic analyses identified four putative PAS proteins in the nematode Caenorhabditis elegans, including possible AHR and ARNT homologs. Phylogenetic analysis of the PAS gene family reveals distinct clades containing both invertebrate and vertebrate PAS family members; the latter include paralogous sequences that we propose have arisen by gene duplication early in vertebrate evolution. Overall, our analyses indicate that the AHR is a phylogenetically ancient protein present in all living vertebrate groups (with a possible invertebrate homolog), thus providing an evolutionary perspective to the study of dioxin toxicity and AHR function.
Resumo:
All immunoglobulins and T-cell receptors throughout phylogeny share regions of highly conserved amino acid sequence. To identify possible primitive immunoglobulins and immunoglobulin-like molecules, we utilized 3' RACE (rapid amplification of cDNA ends) and a highly conserved constant region consensus amino acid sequence to isolate a new immunoglobulin class from the sandbar shark Carcharhinus plumbeus. The immunoglobulin, termed IgW, in its secreted form consists of 782 amino acids and is expressed in both the thymus and the spleen. The molecule overall most closely resembles mu chains of the skate and human and a new putative antigen binding molecule isolated from the nurse shark (NAR). The full-length IgW chain has a variable region resembling human and shark heavy-chain (VH) sequences and a novel joining segment containing the WGXGT motif characteristic of H chains. However, unlike any other H-chain-type molecule, it contains six constant (C) domains. The first C domain contains the cysteine residue characteristic of C mu1 that would allow dimerization with a light (L) chain. The fourth and sixth domains also contain comparable cysteines that would enable dimerization with other H chains or homodimerization. Comparison of the sequences of IgW V and C domains shows homology greater than that found in comparisons among VH and C mu or VL, or CL thereby suggesting that IgW may retain features of the primordial immunoglobulin in evolution.