18 resultados para Sisters, Servants of the Immaculate Heart of Mary
em National Center for Biotechnology Information - NCBI
Resumo:
We used targeted gene disruption in mice to ablate nonmuscle myosin heavy chain B (NMHC-B), one of the two isoforms of nonmuscle myosin II present in all vertebrate cells. Approximately 65% of the NMHC-B−/− embryos died prior to birth, and those that were born suffered from congestive heart failure and died during the first day. No abnormalities were detected in NMHC-B+/− mice. The absence of NMHC-B resulted in a significant increase in the transverse diameters of the cardiac myocytes from 7.8 ± 1.8 μm (right ventricle) and 7.8 ± 1.3 μm (left ventricle) in NMHC-B+/+ and B+/− mice to 14.7 ± 1.1 μm and 13.8 ± 2.3 μm, respectively, in NMHC-B−/− mice (in both cases, P < 0.001). The increase in size of the cardiac myocytes was seen as early as embryonic day 12.5 (4.5 ± 0.2 μm for NMHC-B+/+ and B+/− vs. 7.2 ± 0.6 μm for NMHC-B−/− mice (P < 0.01)). Six of seven NMHC-B−/− newborn mice analyzed by serial sectioning also showed structural cardiac defects, including a ventricular septal defect, an aortic root that either straddled the defect or originated from the right ventricle, and muscular obstruction to right ventricular outflow. Some of the hearts of NMHC-B−/− mice showed evidence for up-regulation of NMHC-A protein. These studies suggest that nonmuscle myosin II-B is required for normal cardiac myocyte development and that its absence results in structural defects resembling, in part, two common human congenital heart diseases, tetralogy of Fallot and double outlet right ventricle.
Resumo:
The role and even the existence of myocyte proliferation in the adult heart remain controversial. Documentation of cell cycle regulators, DNA synthesis, and mitotic images has not modified the view that myocardial growth can only occur from hypertrophy of an irreplaceable population of differentiated myocytes. To improve understanding the biology of the heart and obtain supportive evidence of myocyte replication, three indices of cell proliferation were analyzed in dogs affected by a progressive deterioration of cardiac performance and dilated cardiomyopathy. The magnitude of cycling myocytes was evaluated by the expression of Ki67 in nuclei. Ki67 labeling of left ventricular myocytes increased 5-fold, 12-fold, and 17-fold with the onset of moderate and severe ventricular dysfunction and overt failure, respectively. Telomerase activity in vivo is present only in multiplying cells; this enzyme increased 2.4-fold and 3.1-fold in the decompensated heart, preserving telomeric length in myocytes. The contribution of cycling myocytes to telomerase activity was determined by the colocalization of Ki67 and telomerase in myocyte nuclei. More than 50% of Ki67-positive cells expressed telomerase in the overloaded myocardium, suggesting that these myocytes were the morphological counterpart of the biochemical assay of enzyme activity. Moreover, we report that 20–30% of canine myocytes were telomerase competent, and this value was not changed by cardiac failure. In conclusion, the enhanced expression of Ki67 and telomerase activity, in combination with Ki67-telomerase labeling of myocyte nuclei, support the notion that myocyte proliferation contributes to cardiac hypertrophy of the diseased heart.
Resumo:
Of all humans thus far studied, Sherpas are considered by many high-altitude biomedical scientists as most exquisitely adapted for life under continuous hypobaric hypoxia. However, little is known about how the heart is protected in hypoxia. Hypoxia defense mechanisms in the Sherpa heart were explored by in vivo, noninvasive 31P magnetic resonance spectroscopy. Six Sherpas were examined under two experimental conditions [normoxic (21% FiO2) and hypoxic (11% FiO2) and in two adaptational states--the acclimated state (on arrival at low-altitude study sites) and the deacclimating state (4 weeks of ongoing exposure to low altitude). Four lowland subjects were used for comparison. We found that the concentration ratios of phosphocreatine (PCr)/adenosine triphosphate (ATP) were maintained at steady-state normoxic values (0.96, SEM = 0.22) that were about half those found in normoxic lowlanders (1.76, SEM = 0.03) monitored the same way at the same time. These differences in heart energetic status between Sherpas and lowlanders compared under normoxic conditions remained highly significant (P < 0.02) even after 4 weeks of deacclimation at low altitudes. In Sherpas under acute hypoxia, the heart rate increased by 20 beats per min from resting values of about 70 beats per min, and the percent saturation of hemoglobin decreased to about 75%. However, these perturbations did not alter the PCr/ATP concentration ratios, which remained at about 50% of the values expected in healthy lowlanders. Because the creatine phosphokinase reaction functions close to equilibrium, these steady-state PCr/ATP ratios presumably coincided with about 3-fold higher free adenosine diphosphate (ADP) concentrations. Higher ADP concentrations (i.e., lower [PCr]/[ATP] ratios) were interpreted to correlate with the Km values for ADP-requiring kinases of glycolysis and to reflect elevated carbohydrate contributions to heart energy needs. This metabolic organization is postulated as advantageous in hypobaria because the ATP yield per O2 molecule is 25-60% higher with glucose than with free fatty acids (the usual fuels utilized in the human heart in postfasting conditions).
Resumo:
When the heart fails, there is often a constellation of biochemical alterations of the β-adrenergic receptor (βAR) signaling system, leading to the loss of cardiac inotropic reserve. βAR down-regulation and functional uncoupling are mediated through enhanced activity of the βAR kinase (βARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. In this study, we demonstrate, using in vivo intracoronary adenoviral-mediated gene delivery of a peptide inhibitor of βARK1 (βARKct), that the desensitization and down-regulation of βARs seen in the failing heart may actually be maladaptive. In a rabbit model of heart failure induced by myocardial infarction, which recapitulates the biochemical βAR abnormalities seen in human heart failure, delivery of the βARKct transgene at the time of myocardial infarction prevents the rise in βARK1 activity and expression and thereby maintains βAR density and signaling at normal levels. Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of βAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of βARK1 and preservation of myocardial βAR function.
Resumo:
Transgenic mice were generated in which the cDNA for the human insulin-like growth factor 1B (IGF-1B) was placed under the control of a rat alpha-myosin heavy chain promoter. In mice heterozygous for the transgene, IGF-1B mRNA was not detectable in the fetal heart at the end of gestation, was present in modest levels at 1 day after birth, and increased progressively with postnatal maturation, reaching a peak at 75 days. Myocytes isolated from transgenic mice secreted 1.15 +/- 0.25 ng of IGF-1 per 10(6) cells per 24 hr versus 0.27 +/- 0.10 ng in myocytes from homozygous wild-type littermates. The plasma level of IGF-1 increased 84% in transgenic mice. Heart weight was comparable in wild-type littermates and transgenic mice up to 45 days of age, but a 42%, 45%, 62%, and 51% increase was found at 75, 135, 210, and 300 days, respectively, after birth. At 45, 75, and 210 days, the number of myocytes in the heart was 21%, 31%, and 55% higher, respectively, in transgenic animals. In contrast, myocyte cell volume was comparable in transgenic and control mice at all ages. In conclusion, overexpression of IGF-1 in myocytes leads to cardiomegaly mediated by an increased number of cells in the heart.
Resumo:
Adenosine released during cardiac ischemia exerts a potent, protective effect in the heart. A newly recognized adenosine receptor, the A3 subtype, is expressed on the cardiac ventricular cell, and its activation protects the ventricular heart cell against injury during a subsequent exposure to ischemia. A cultured chicken ventricular myocyte model was used to investigate the cardioprotective role of a novel adenosine A3 receptor. The protection mediated by prior activation of A3 receptors exhibits a significantly longer duration than that produced by activation of the adenosine A1 receptor. Prior exposure of the myocytes to brief ischemia also protected them against injury sustained during a subsequent exposure to prolonged ischemia. The adenosine A3 receptor-selective antagonist 3-ethyl 5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) caused a biphasic inhibition of the protective effect of the brief ischemia. The concomitant presence of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) converted the MRS1191-induced dose inhibition curve to a monophasic one. The combined presence of both antagonists abolished the protective effect induced by the brief ischemia. Thus, activation of both A1 and A3 receptors is required to mediate the cardioprotective effect of the brief ischemia. Cardiac atrial cells lack native A3 receptors and exhibit a shorter duration of cardioprotection than do ventricular cells. Transfection of atrial cells with cDNA encoding the human adenosine A3 receptor causes a sustained A3 agonist-mediated cardioprotection. The study indicates that cardiac adenosine A3 receptor mediates a sustained cardioprotective function and represents a new cardiac therapeutic target.
Resumo:
Heart failure is accompanied by severely impaired β-adrenergic receptor (βAR) function, which includes loss of βAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of βAR function is agonist-stimulated receptor phosphorylation by the βAR kinase (βARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in βAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of βARK1 or the β2AR were mated into a genetic model of murine heart failure (MLP−/−). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP−/− and MLP−/−/β2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP−/−/βARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP−/−/βARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP−/− mice but less than controls. Importantly, heightened βAR desensitization in the MLP−/− mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the βARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal βAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit βARK1 as a novel mode of therapy.
Resumo:
The F1 part of the F1FO ATP synthase from Escherichia coli has been crystallized and its structure determined to 4.4-Å resolution by using molecular replacement based on the structure of the beef-heart mitochondrial enzyme. The bacterial F1 consists of five subunits with stoichiometry α3, β3, γ, δ, and ɛ. δ was removed before crystallization. In agreement with the structure of the beef-heart mitochondrial enzyme, although not that from rat liver, the present study suggests that the α and β subunits are arranged in a hexagonal barrel but depart from exact 3-fold symmetry. In the structures of both beef heart and rat-liver mitochondrial F1, less than half of the structure of the γ subunit was seen because of presumed disorder in the crystals. The present electron-density map includes a number of rod-shaped features which appear to correspond to additional α-helical regions within the γ subunit. These suggest that the γ subunit traverses the full length of the stalk that links the F1 and FO parts and makes significant contacts with the c subunit ring of FO.
Resumo:
We report here that the rat heart is a site of oxytocin (OT) synthesis and release. Oxytocin was detected in all four chambers of the heart. The highest OT concentration was in the right atrium (2128 ± 114 pg/mg protein), which was 19-fold higher than in rat uterus but 3.3-fold lower than in the hypothalamus. OT concentrations were significantly greater in the right and left atria than in the corresponding ventricles. Furthermore, OT was released into the effluent of isolated, perfused rat heart (34.5 ± 4.7 pg/min) and into the medium of cultured atrial myocytes. Reverse-phase HPLC purification of the heart extracts and heart perfusates revealed a main peak identical with the retention time of synthetic OT. Southern blots of reverse transcription–PCR products from rat heart revealed gene expression of specific OT mRNA. OT immunostaining likewise was found in atrial myocytes and fibroblasts, and the intensity of positive stains from OT receptors paralleled the atrial natriuretic peptide stores. Our findings suggest that heart OT is structurally identical, and therefore derived from, the same gene as the OT that is primarily found in the hypothalamus. Thus, the heart synthesizes and processes a biologically active form of OT. The presence of OT and OT receptor in all of the heart’s chambers suggests an autocrine and/or paracrine role for the peptide. Our finding of abundant OT receptor in atrial myocytes supports our hypothesis that OT, directly and/or via atrial natriuretic peptide release, can regulate the force of cardiac contraction.
Resumo:
Na+-Ca2+ exchanger and Ca2+ channel are two major sarcolemmal Ca2+-transporting proteins of cardiac myocytes. Although the Ca2+ channel is effectively regulated by protein kinase A-dependent phosphorylation, no enzymatic regulation of the exchanger protein has been identified as yet. Here we report that in frog ventricular myocytes, isoproterenol down-regulates the Na+-Ca2+ exchanger, independent of intracellular Ca2+ and membrane potential, by activation of the beta-receptor/adenylate-cyclase/cAMP-dependent cascade, resulting in suppression of transmembrane Ca2+ transport via the exchanger and providing for the well-documented contracture-suppressant effect of the hormone on frog heart. The beta-blocker propranolol blocks the isoproterenol effect, whereas forskolin, cAMP, and theophylline mimic it. In the frog heart where contractile Ca2+ is transported primarily by the Na+-Ca2+ exchanger, the beta-agonists' simultaneous enhancement of Ca2+ current, ICa, and suppression of Na+-Ca2+ exchanger current, INa-Ca would enable the myocyte to develop force rapidly at the onset of depolarization (enhancement of ICa) and to decrease Ca2+ influx (suppression of INa-Ca) later in the action potential. This unique adrenergically induced shift in the Ca2+ influx pathways may have evolved in response to paucity of the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex and absence of significant intracellular Ca2+ release pools in the frog heart.
Resumo:
Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.
Resumo:
In many vertebrate and invertebrate cells, inositol 1,4,5-trisphospate production induces a biphasic Ca2+ signal. Mobilization of Ca2+ from internal stores drives the initial burst. The second phase, referred to as store-operated Ca2+ entry (formerly capacitative Ca2+ entry), occurs when depletion of intracellular Ca2+ pools activates a non-voltage-sensitive plasma membrane Ca2+ conductance. Despite the prevalence of store-operated Ca2+ entry, no vertebrate channel responsible for store-operated Ca2+ entry has been reported. trp (transient receptor potential), a Drosophila gene required in phototransduction, encodes the only known candidate for such a channel throughout phylogeny. In this report, we describe the molecular characterization of a human homolog of trp, TRPC1. TRPC1 (transient receptor potential channel-related protein 1) was 40% identical to Drosophila TRP over most of the protein and lacked the charged residues in the S4 transmembrane region proposed to be required for the voltage sensor in many voltage-gated ion channels. TRPC1 was expressed at the highest levels in the fetal brain and in the adult heart, brain, testis, and ovaries. Evidence is also presented that TRPC1 represents the archetype of a family of related human proteins.
Resumo:
Ethanol acts as a teratogen in developing fetuses causing abnormalities of the brain, heart, craniofacial bones, and limb skeletal elements. To assess whether some teratogenic actions of ethanol might occur via dysregulation of msx2 expression, we examined msx2 expression in developing mouse embryos exposed to ethanol on embryonic day (E) 8 of gestation and subjected to whole mount in situ hybridization on E11–11.5 using a riboprobe for mouse msx2. Control mice exhibited expression of msx2 in developing brain, the developing limb buds and apical ectodermal ridge, the lateral and nasal processes, olfactory pit, palatal shelf of the maxilla, the eye, the lens of the eye, otic vesicle, prevertebral bodies (notochord), and endocardial cushion. Embryos exposed to ethanol in utero were significantly smaller than their normal counterparts and did not exhibit expression of msx2 in any structures. Similarly, msx2 expression, as determined by reverse transcription–PCR and Northern blot hybridization, was reduced ≈40–50% in fetal mouse calvarial osteoblastic cells exposed to 1% ethanol for 48 hr while alkaline phosphatase was increased by 2-fold and bone morphogenetic protein showed essentially no change. Transcriptional activity of the msx2 promoter was specifically suppressed by alcohol in MC3T3-E1 osteoblasts. Taken together, these data demonstrate that fetal alcohol exposure decreases msx2 expression, a known regulator of osteoblast and myoblast differentiation, and suggest that one of the “putative” mechanisms for fetal alcohol syndrome is the inhibition of msx2 expression during key developmental periods leading to developmental retardation, altered craniofacial morphogenesis, and cardiac defects.